Publications by authors named "Ruoyu Sheng"

Exosomes derived from mesenchymal stem cells (MSCs) offer a promising alternative to traditional cell-based therapies for tissue repair by mitigating risks associated with the transplantation of living cells. However, insufficient osteogenic capacity of exosomes diminishes their potential in bone tissue regeneration. Here, we report novel osteogenically induced exosome mimetics (EMs) integrated into injectable hydrogel carriers for improved bone regeneration.

View Article and Find Full Text PDF

Neo-tissue formation and host tissue regeneration determine the success of cardiac tissue engineering where functional hydrogel scaffolds act as cardiac (extracellular matrix) ECM mimic. Translationally, the hydrogel templates promoting neo-cardiac tissue formation are currently limited; however, they are highly demanding in cardiac tissue engineering. The current study focused on the development of a panel of four chitosan-based polyelectrolyte hydrogels as cardiac scaffolds facilitating neo-cardiac tissue formation to promote cardiac regeneration.

View Article and Find Full Text PDF

Piezoelectric materials are promising for biomedical applications because they can provide mechanical or electrical stimulations via converse or direct piezoelectric effects. The stimulations have been proven to be beneficial for cell proliferation and tissue regeneration. Recent reports showed that doping different contents of reduced graphene oxide (rGO) or polyaniline (PANi) into biodegradable polyhydroxybutyrate (PHB) enhanced their piezoelectric response, showing potential for biomedical applications.

View Article and Find Full Text PDF

Prostate embryonic development, pubertal and adult growth, maintenance, and regeneration are regulated through androgen signaling-mediated mesenchymal-epithelial interactions. Specifically, the essential role of mesenchymal androgen signaling in the development of prostate epithelium has been observed for over 30 years. However, the identity of the mesenchymal cells responsible for this paracrine regulation and related mechanisms are still unknown.

View Article and Find Full Text PDF