Deep learning-based methods have achieved encouraging performances in the field of Magnetic Resonance (MR) image reconstruction. Nevertheless, building powerful and robust deep learning models requires collecting large and diverse datasets from multiple centers. This raises concerns about ethics and data privacy.
View Article and Find Full Text PDFHeterogeneous data captured by different scanning devices and imaging protocols can affect the generalization performance of the deep learning magnetic resonance (MR) reconstruction model. While a centralized training model is effective in mitigating this problem, it raises concerns about privacy protection. Federated learning is a distributed training paradigm that can utilize multi-institutional data for collaborative training without sharing data.
View Article and Find Full Text PDFDeep learning (DL) has emerged as a leading approach in accelerating MRI. It employs deep neural networks to extract knowledge from available datasets and then applies the trained networks to reconstruct accurate images from limited measurements. Unlike natural image restoration problems, MRI involves physics-based imaging processes, unique data properties, and diverse imaging tasks.
View Article and Find Full Text PDFBioengineering (Basel)
November 2022
Lately, deep learning technology has been extensively investigated for accelerating dynamic magnetic resonance (MR) imaging, with encouraging progresses achieved. However, without fully sampled reference data for training, the current approaches may have limited abilities in recovering fine details or structures. To address this challenge, this paper proposes a self-supervised collaborative learning framework (SelfCoLearn) for accurate dynamic MR image reconstruction from undersampled k-space data directly.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
October 2023
With the successful application of deep learning to magnetic resonance (MR) imaging, parallel imaging techniques based on neural networks have attracted wide attention. However, in the absence of high-quality, fully sampled datasets for training, the performance of these methods is limited. And the interpretability of models is not strong enough.
View Article and Find Full Text PDF