The transportation and transformation of biogenic isoprene are vital for the organic carbon cycle in the troposphere. As a typical mineral with high oxidation potential, Fe-substituted cryptomelane oxidizes the surface monolayer of isoprene into formic and acetic acids, and simultaneously, the Mn ions in the structure are reduced to Mn and Mn. The flow of HO in isoprene decreases the adsorption and oxidation of isoprene significantly, even at low relative humidity (10%).
View Article and Find Full Text PDFBackground: The pattern of abnormal resting-state brain function has been documented in schizophrenia (SCZ). However, as of yet, it remains unclear whether this pattern is of genetic predisposition or related to the illness itself.
Methods: A systematical meta-analysis was performed to identify resting-state functional differences in probands and their high-risk first-degree relatives of schizophrenia (FDRs-SCZ) using Seed-based d Mapping software.
Prog Neuropsychopharmacol Biol Psychiatry
January 2025
Background: Numerous neuroimaging studies utilizing resting-state functional imaging and voxel-based morphometry (VBM) have identified variations in distinct brain regions among individuals with attention-deficit/hyperactivity disorder (ADHD). However, the results have been inconsistent.
Methods: A comprehensive voxel-wise meta-analysis was performed on studies employing resting-state functional imaging and gray matter volume (GMV), examining discrepancies between individuals with ADHD and neurotypical controls (NCs).
In a real-world environment, the brain must integrate information from multiple sensory modalities, including the auditory and olfactory systems. However, little is known about the neuronal circuits governing how odors influence and modulate sound processing. Here, we investigated the mechanisms underlying auditory-olfactory integration using anatomical, electrophysiological, and optogenetic approaches, focusing on the auditory cortex as a key locus for cross-modal integration.
View Article and Find Full Text PDFIn a real-world environment, the brain must integrate information from multiple sensory modalities, including the auditory and olfactory systems. However, little is known about the neuronal circuits governing how odors influence and modulate sound processing. Here, we investigated the mechanisms underlying auditory-olfactory integration using anatomical, electrophysiological, and optogenetic approaches, focusing on the auditory cortex as a key locus for cross-modal integration.
View Article and Find Full Text PDFHumans and animals have an impressive ability to juggle multiple tasks in a constantly changing environment. This flexibility, however, leads to decreased performance under uncertain task conditions. Here, we combined monkey electrophysiology, human psychophysics, and artificial neural network modeling to investigate the neuronal mechanisms of this performance cost.
View Article and Find Full Text PDF