Front Cardiovasc Med
September 2024
Ischemic heart disease refers to the imbalance between the supply and demand of myocardial blood; it has various causes and results in a class of clinical diseases characterized by myocardial ischemia (MI). In recent years, the incidence of cardiovascular disease has become higher and higher, and the number of patients with ischemic heart disease has also increased year by year. Traditional treatment methods include drug therapy and surgical treatment, both of which have limitations.
View Article and Find Full Text PDFObjective: To explore multi-aspect radiologic assessment of immunotherapy response in intracranial malignancies based on a semi-automatic segmentation technique, and to explore volumetric thresholds with good performance according to RECIST 1.1 thresholds.
Methods: Patients diagnosed with intracranial malignancies and treated with immunotherapy were included retrospectively.
Cerebral ischemia refers to the symptom of insufficient blood supply to the brain. Cells of many different origins participate in the process of repairing damage after cerebral ischemia occurs, in which exosomes secreted by the cells play important roles. For their characteristics, such as small molecular weight, low immunogenicity, and the easy penetration of the blood-brain barrier (BBB), exosomes can mediate cell-to-cell communication under pathophysiological conditions.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common malignant tumor of the central nervous system with poor prognosis. Although the field of immunotherapy in glioma is developing rapidly, glioblastoma is still prone to recurrence under strong immune intervention. The major challenges in the process of immunotherapy are evaluating the curative effect, accurately distinguishing between treatment-related reactions and tumor recurrence, and providing guidance for clinical decision-making.
View Article and Find Full Text PDFGlioblastoma (GBM), one of the most common primary intracranial malignant tumours, is very difficult to be completely excised by surgery due to its irregular shape. Here, we use an MRI/NIR fluorescence dual-modal imaging nanoprobe that includes superparamagnetic iron oxide nanoparticles (SPIONs) modified with indocyanine (Cy7) molecules and peptides (ANG or ANG) to locate malignant gliomas and guide accurate excision. Both peptides/Cy7-SPIONs probes displayed excellent tumour-homing properties and barrier penetrating abilities in vitro, and both could mediate precise aggregation of the nanoprobes at gliomas sites in in vivo magnetic resonance imaging (MRI) and ex vivo near-infrared (NIR) fluorescence imaging.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
September 2020
Transcranial magnetic stimulation (TMS), as a non-invasive neuromodulation technique, has achieved certain results in the study of brain function localization, treatment of nervous and mental diseases, but its mechanism of action and physiological effects are difficult to be clarified. The signals in blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) is capable of reflecting the activities of brain tissue neurons. TMS-fMRI combines the advantages of two techniques to monitor changes in excitability of the TMS stimulation site and the distal brain region with which it is functionally linked.
View Article and Find Full Text PDF