Bird flight is often characterized by outstanding aerodynamic efficiency, agility and adaptivity in dynamic conditions. Feathers play an integral role in facilitating these aspects of performance, and the benefits feathers provide largely derive from their intricate and hierarchical structures. Although research has been attempted on developing membrane-type artificial feathers for bio-inspired aircraft and micro air vehicles (MAVs), fabricating anatomically accurate artificial feathers to fully exploit the advantages of feathers has not been achieved.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
Current additive manufacturing processes for polymers, including material extrusion, vat photopolymerization, material jetting, and powder bed fusion, have limitations in manufacturing high-temperature thermoplastics including narrow material selection, compromised mechanical properties, and potential degradation of materials during processing. Polysulfone (PSU) is a high-temperature thermoplastic with outstanding chemical resistance, flame retardancy, and toughness. However, besides injection molding, additive manufacturing of PSU has only been achieved through extrusion or solvent-cast three-dimensional (3D) printing without obtaining high mechanical properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Stretchable piezoelectric stress/strain sensing materials have attracted substantial research interest in the fields of wearable health monitoring, motion capturing, and soft robotics. These sensors require operation under dynamic loading conditions with high strain range, changing strain/loading rates, and varying pre-stretch states, which are challenging conditions for existing sensors to produce reliable measurements. To overcome these challenges, an intrinsically stretchable poly(vinylidene fluoride) (PVDF) sensor is developed through the polymer blending of PVDF and acrylonitrile butadiene rubber (NBR).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Poly(vinylidene fluoride) (PVDF) possesses outstanding piezoelectric properties, which allows it to be utilized as a functional material. Being a semicrystalline polymer, enhancing the piezoelectric properties of PVDF through the promotion of the polar β phase is a key research focus. In this research, precipitation printing is demonstrated as a scalable and tailorable approach to additively manufacture complex and bulk 3D piezoelectric energy harvesters with high-β phase PVDF.
View Article and Find Full Text PDF