Integrating photocatalytic oxidation for pollutant removal with hydrogen production via photocatalysis presents a promising approach for sustainable water purification and renewable energy generation, circumventing the sluggish multi-electron transfer inherent in photocatalytic water oxidation. This study introduces novel zero-/one-dimensional (0D/1D) CuWO/MnCdS step-scheme (S-scheme) heterojunctions that exhibit exceptional bifunctional capabilities in photocatalytic degradation and hydrogen production under full-spectrum illumination. The degradation efficiency for tetracycline (TC) using 5 %-CuWO/MnCdS reaches 94.
View Article and Find Full Text PDFBroadening the absorption region to near-infrared (NIR) light is critical for the photocatalysis due to the larger proportion and stronger penetration of NIR light in solar energy. In the present paper, one-dimensional (1D) MWO (M = Mn, Co, and Cd) materials synthesized by electrospinning technique, were studied by combining the density functional theory (DFT) with experiment results, which possessed the enhanced light absorption capability within the range of 200-2000 nm. It was proved that in the ultraviolet-visible (UV-Vis) region, the absorption bands of CoWO and MnWO samples were attributed to the metal-to-metal charge transfer mechanism, while the absorption of CdWO sample may be referable to the ligand-to-metal charge transfer mechanism.
View Article and Find Full Text PDF