IEEE Trans Pattern Anal Mach Intell
December 2024
This paper proposes an end-to-end deep learning approach for removing defocus blur from a single defocused image. Defocus blur is a common issue in digital photography that poses a challenge due to its spatially-varying and large blurring effect. The proposed approach addresses this challenge by employing a pixel-wise Gaussian kernel mixture (GKM) model to accurately yet compactly parameterize spatially-varying defocus point spread functions (PSFs), which is motivated by the isotropy in defocus PSFs.
View Article and Find Full Text PDFIEEE Trans Image Process
June 2021
In recent years, multi-view learning has emerged as a promising approach for 3D shape recognition, which identifies a 3D shape based on its 2D views taken from different viewpoints. Usually, the correspondences inside a view or across different views encode the spatial arrangement of object parts and the symmetry of the object, which provide useful geometric cues for recognition. However, such view correspondences have not been explicitly and fully exploited in existing work.
View Article and Find Full Text PDFIEEE Trans Image Process
January 2021
Morphology component analysis provides an effective framework for structure-texture image decomposition, which characterizes the structure and texture components by sparsifying them with certain transforms respectively. Due to the complexity and randomness of texture, it is challenging to design effective sparsifying transforms for texture components. This paper aims at exploiting the recurrence of texture patterns, one important property of texture, to develop a nonlocal transform for texture component sparsification.
View Article and Find Full Text PDF