J Eur Acad Dermatol Venereol
January 2025
Background: Depletion or permanent quiescence of the hair follicle stem cell (HFSC) pool underlies pathogenesis in androgenetic alopecia (AGA). Reactivation of quiescent HFSCs is considered an efficient treatment strategy for hair loss. The retinoic acid (RA) is critical to ensure stem cell homeostasis and function.
View Article and Find Full Text PDFTwisted van der Waals (vdW) quantum materials have emerged as a rapidly developing field of two-dimensional (2D) semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single photon emission, nonlinear optical response, magnon physics, and topological superconductivity. These captivating electronic and optical properties result from, and can be tailored by, the interlayer coupling using moiré patterns formed by vertically stacking atomic layers with controlled angle misorientation or lattice mismatch.
View Article and Find Full Text PDFHair loss is a debilitating condition associated with the depletion of dermal papilla cells (DPCs), which can be replenished by dermal sheath cells (DSCs). Hence, strategies aimed at increasing the populations of DPCs and DSCs hold promise for the treatment of hair loss. In this study, we demonstrated in mice that introduced exogenous DPCs and DSCs (hair follicle mesenchymal stem cells) could effectively migrate and integrate into the dermal papilla and dermal sheath niches, leading to enhanced hair growth and prolonged anagen phases.
View Article and Find Full Text PDFSteep subthreshold swing (SS) is a decisive index for low energy consumption devices. However, the SS of conventional field effect transistors (FETs) has suffered from Boltzmann Tyranny, which limits the scaling of SS to sub-60 mV dec at room temperature. Ferroelectric gate stack with negative capacitance (NC) is proved to reduce the SS effectively by the amplification of the gate voltage.
View Article and Find Full Text PDFAndrogenetic alopecia (AGA) affects more than half of the adult population worldwide and is primarily caused by the binding of dihydrotestosterone (DHT) to androgen receptors (AR). However, the mechanisms by which AR affects hair follicles remain unclear. In our study, we found that miR-221 significantly suppressed hair growth and the proliferation of dermal papilla cells (DPCs) and dermal sheath cells (DSCs) in AGA patients.
View Article and Find Full Text PDFBackground: Follicular vitiligo is a distinct subtype of vitiligo characterized by the selective destruction of the follicular melanocytic reservoir. Treatment of follicular vitiligo-associated leukotrichia has always been a clinical challenge.
Methods: Twenty participants (mean age, 29 years) with stable follicular vitiligo were recruited between 2020 and 2021 for 2-stage surgery.
RNA methylation normally inhibits the self-recognition and immunogenicity of RNA. As such, it is likely an important inhibitor of cancer immune recognition in the tumor microenvironment, but how N6-methyladenosine (m6A) affects prognosis and treatment response remains unknown. In eight independent melanoma cohorts (1,564 patients), the modification patterns of 21 m6A gene signatures were systematically correlated with the immune cell infiltration of melanoma tumor microenvironment.
View Article and Find Full Text PDFTissue injury induces metabolic changes in stem cells, which likely modulate regeneration. Using a model of organ regeneration called wound-induced hair follicle neogenesis (WIHN), we identified skin-resident bacteria as key modulators of keratinocyte metabolism, demonstrating a positive correlation between bacterial load, glutamine metabolism, and regeneration. Specifically, through comprehensive multiomic analysis and single-cell RNA sequencing in murine skin, we show that bacterially induced hypoxia drives increased glutamine metabolism in keratinocytes with attendant enhancement of skin and hair follicle regeneration.
View Article and Find Full Text PDFBackground: Scarring that results in eyebrow loss is a cosmetic problem that can result in severe psychological distress. Although hair transplantation is increasingly used for eyebrow restoration, graft loss may occur, preventing achievement of desired results. Single-hair follicle transplantation, however, may be effective.
View Article and Find Full Text PDFBackground: Hair follicle mesenchymal stem cells (HF-MSCs) have great potential for cell therapy. Traditional method to isolate whisker HF-MSC is time-consuming and few in cell numbers. How to quickly and conveniently obtain a large number of HF-MSC for experimental research is a problem worth exploring.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are known for their self-renewal and multi-lineage differentiation potential, with these cells often being evaluated in the regulation and maintenance of specific cellular niches including those of the hair follicle. Most mesenchymal stem cells in the hair follicles are housed in the dermal papilla (DP) and dermal sheath (DS), with both niches characterized by a broad variety of cellular subsets. However, while most previous studies describing the hair follicle mesenchymal niche treated all DP and DS cells as Hair Follicle Mesenchymal Stem Cells (HF-MSCs), the high number of cellular subsets would suggest that these cells are actually too heterogenous for such a broad definition.
View Article and Find Full Text PDFBackground: Hair transplantation based on the follicular unit extraction provides a new opportunity to improve the appearance of patients with congenital sparse eyelashes. However, disparity between transplanted grafts and original eyelashes and the physiological characteristics of upper eyelid skin cause difficulties with this technique and result in low satisfaction. Removal of unsatisfactory eyelashes is indispensable for restoration of appearance and a second transplantation.
View Article and Find Full Text PDFThe switching variability caused by intrinsic stochasticity of the ionic/atomic motions during the conductive filaments (CFs) formation process largely limits the applications of diffusive memristors (DMs), including artificial neurons, neuromorphic computing and artificial sensory systems. In this study, a DM device with improved device uniformity based on well-crystallized two-dimensional (2D) h-BN, which can restrict the CFs formation from three to two dimensions due to the high migration barrier of Ag between h-BN interlayer, is developed. The BN-DM has potential arrayable feature with high device yield of 88%, which can be applied for building a reservoir computing system for digital pattern recognition with high accuracy rate of 96%, and used as an artificial nociceptor to sense the external noxious stimuli and mimic the important biological nociceptor properties.
View Article and Find Full Text PDFThe mimicking of both homosynaptic and heterosynaptic plasticity using a high-performance synaptic device is important for developing human-brain-like neuromorphic computing systems to overcome the ever-increasing challenges caused by the conventional von Neumann architecture. However, the commonly used synaptic devices (e.g.
View Article and Find Full Text PDFClinical observation and experimental studies have long suggested that the perifollicular nerves have nutritional and regulatory effects on the growth, development, and physiological cycle of hair follicles (HFs), even though the concrete mechanism remains obscure. Recently, with the progress of immunohistochemistry and molecular biology techniques, more innovation has been made in the study of the follicular sympathetic nerves and its nerve-effect factor norepinephrine affecting hair follicle stem cells. This review highlights the progress in the regulation of the sympathetic nervous system toward the growth of HFs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2021
Two-dimensional MXene has enormous potential for application in industry and academia owing to its surface hydrophilicity and excellent electrochemical properties. However, the application of MXene in optoelectronic memory and logical computing is still facing challenges. In this study, an optoelectronic resistive random access memory (RRAM) based on silver nanoparticles (Ag NPs)@MXene-TiO nanosheets (AMT) was prepared through a low-cost and facile hydrothermal oxidation process.
View Article and Find Full Text PDFBackground: Diabetic wounds threaten the health and quality of life of patients and their treatment remains challenging. ADSC-derived exosomes have shown encouraging results in enhancing diabetic wound healing. However, how to use exosomes in wound treatment effectively is a problem that needs to be addressed at present.
View Article and Find Full Text PDFEnvironmental factors that enhance regeneration are largely unknown. The immune system and microbiome are attributed roles in repairing and regenerating structure but their precise interplay is unclear. Here, we assessed the function of skin bacteria in wound healing and wound-induced hair follicle neogenesis (WIHN), a rare adult organogenesis model.
View Article and Find Full Text PDFBackground: Periodically regenerated hair follicles provide an excellent research model for studying tissue regeneration and stem cell homeostasis. Periodic activation and differentiation of hair follicle stem cells (HFSCs) fuel cyclical bouts of hair regeneration. HFSCs represent an excellent paradigm for studying tissue regeneration and somatic stem cell homeostasis.
View Article and Find Full Text PDFBackground: Hair follicle tissue engineering is a promising strategy for treating hair loss. Human hair follicle stem cells (hHFSCs), which play a key role in the hair cycle, have potential applications in regenerative medicine. However, previous studies did not achieve efficient hHFSC expansion using feeder cells.
View Article and Find Full Text PDFThe application of dermal papilla cells to hair follicle (HF) regeneration has attracted a great deal of attention. However, cultured dermal papilla cells (DPCs) tend to lose their capacity to induce hair growth during passage, restricting their usefulness. Accumulating evidence indicates that DPCs regulate HF growth mainly through their unique paracrine properties, raising the possibility of therapies based on extracellular vesicles (EVs).
View Article and Find Full Text PDFBackground: Transplanted hair follicles suffer from various injuries, which are difficult to prevent. Hyperbaric oxygen therapy (HBOT) was reported to be an excellent procedure to promote capillary regeneration and reduce ischemia-reperfusion injury.
Aim: To evaluate the clinical efficacy of HBOT as an adjuvant therapy for hair transplantation surgery.
Hair regeneration has long captured researchers' attention because alopecia is a common condition and current therapeutic approaches have significant limitations. Dermal papilla (DP) cells serve as a signaling center in hair follicles and regulate hair formation and cycling by paracrine secretion. Secreted EVs are important signaling mediators for intercellular communication, and DP-derived extracellular vesicles (DP-EVs) may play an important role in hair regeneration.
View Article and Find Full Text PDFBackground: Hair transplantation is the gold standard method for the treatment of alopecia. Recently, demand for the surgery has increased rapidly. However, high demands also require more professional training for the surgeons.
View Article and Find Full Text PDF