Introduction: Lignin is a principal constituent of the secondary cell wall, which plays a role in both plant growth and defensing against stress, such as low temperature and pest infestation. Additionally, it also accumulates in fleshy fruits and negatively affects fruit quality. Red-fleshed loquat is temperature sensitive and exhibits cold-induced lignification.
View Article and Find Full Text PDFChanges in both lignin biosynthesis and DNA methylation have been reported to be associated with chilling stress in plants. When stored at low temperatures, red-fleshed loquat is prone to lignification, with increased lignin content and fruit firmness, which has deleterious effects on taste and eating quality. Here, we found that 5 °C storage mitigated the increasing firmness and lignin content of red-fleshed 'Dahongpao' ('DHP') loquat fruit that occurred during 0 °C storage.
View Article and Find Full Text PDFA hallmark of cerebral malaria is sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microcirculation. Antibodies contribute to malaria immunity, but it remains unclear whether functional antibodies targeting parasite-expressed ligand can block cytoadhesion in the brain. Here, we screened the plasma of older children and young adults in Malawi to characterize the antibody response against the P.
View Article and Find Full Text PDFSequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microcirculation is a hallmark of cerebral malaria (CM), which leads to endothelial activation, brain swelling, and death. Here, we probed CM inflammation in a perfusable 3D human brain microvessel model. 3D brain microvessels supported in vivo-like capacities for parasite binding and maturation in situ, leading to a distinct inflammatory response from the pro-inflammatory cytokine tumor necrosis factor α (TNF-α).
View Article and Find Full Text PDFWild loquats ( Lindl.) provide remarkable genetic resources for studying domestication and breeding improved varieties. Herein, we generate the first high-quality chromosome-level genome assembly of wild loquat, with 45 791 predicted protein-coding genes.
View Article and Find Full Text PDFThe WUSCHEL (WUS)-related homeobox () gene family plays a crucial role in stem cell maintenance, apical meristem formation, embryonic development, and various other developmental processes. However, the identification and function of genes have not been reported in perennial loquat. In this study, 18 genes were identified in the loquat genome.
View Article and Find Full Text PDFCell size and density are tightly controlled in mammalian cells. They impact a wide range of physiological functions, including osmoregulation, tissue homeostasis, and growth regulation. Compared to size, density variation for a given cell type is typically much smaller, implying that cell-type-specific density plays an important role in cell function.
View Article and Find Full Text PDFIn the Chinese society, border agents in channel transactions will choose different opportunistic behavior response strategies to the tolerance of other members based on the relationship between the two parties. Based on 206 valid questionnaires collected, structural equation model and regression analysis were used to investigate the influence of opportunistic behavior tolerance on response strategy selection. The results show that the channel boundary personnel's tolerance to opportunistic behavior (based on work or personal) negatively influences their choice of a positive response strategy and positively influences their choice of a negative response strategy.
View Article and Find Full Text PDFLabel-free multiphoton microscopy is a powerful platform for biomedical imaging. Recent advancements have demonstrated the capabilities of transient absorption microscopy (TAM) for label-free quantification of hemoglobin and stimulated Raman scattering (SRS) microscopy for pathological assessment of label-free virtual histochemical staining. We propose the combination of TAM and SRS with two-photon excited fluorescence (TPEF) to characterize, quantify, and compare hemodynamics, vessel structure, cell density, and cell identity in vivo between age groups.
View Article and Find Full Text PDFHyperspectral imaging is a technique that provides rich chemical or compositional information not regularly available to traditional imaging modalities such as intensity imaging or color imaging based on the reflection, transmission, or emission of light. Analysis of hyperspectral imaging often relies on machine learning methods to extract information. Here, we present a new flexible architecture, the U-within-U-Net, that can perform classification, segmentation, and prediction of orthogonal imaging modalities on a variety of hyperspectral imaging techniques.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2020
Microscale thermometry of aqueous solutions is essential to understand the dynamics of local heat generation and dissipation in chemical and biological systems. A wide variety of fluorescent probes have been developed to map temperature changes with submicrometer resolution, but they often suffer from the uncertainty associated with microenvironment-dependent fluorescent properties. In this work, we develop a label-free ratiometric stimulated Raman scattering (SRS) microscopy technique to quantify microscale temperature by monitoring the O-H Raman stretching modes of water.
View Article and Find Full Text PDFFlower development is a vital developmental process in the life cycle of woody perennials, especially fruit trees. Herein, we used transcriptomic, proteomic, and hormone analyses to investigate the key candidate genes/proteins in loquat () at the stages of flower bud differentiation (FBD), floral bud elongation (FBE), and floral anthesis (FA). Comparative transcriptome analysis showed that differentially expressed genes (DEGs) were mainly enriched in metabolic pathways of hormone signal transduction and starch and sucrose metabolism.
View Article and Find Full Text PDFDouble-flower , of which one phenotype is homeotic transformation of sepals into petals, is a new germplasm for revealing the molecular mechanisms underlying the floral organ transformation. Herein, we analyzed the sequence, expression pattern and functional characterization of , which encoded a B-class floral homeotic protein referred to as ortholog, from genetically cognate single-flower and double-flower . Phylogenetic analysis suggested that the gene was assigned to the rosids PI/GLO lineage.
View Article and Find Full Text PDF