The observed properties of crystalline polymers are determined by their internal structure, which in turn is the result of their different crystallization behaviors. Here, we investigate the crystallization behavior of poly(lactic acid) (PLA) by terahertz time-domain spectroscopy (THz-TDS) at varied temperatures. We find that the changes in the chain packing and conformation of PLA are characterized by THz spectroscopy.
View Article and Find Full Text PDFd-Histidine (d-His), l-Histidine (l-His), and their racemic compound dl-Histidine (dl-His) have different stereo chirality, making them intrinsic diverse functionalities to the living system. Identifying the configuration and crystal structures of enantiomers and the racemic compound is always the foremost requirement in processing protein foods. Although these features can be analyzed by spectroscopic technologies individually, it remains challenging to incorporate these complex methods into a facile analytical strategy.
View Article and Find Full Text PDFDuring crystallization, conformational changes are often accompanied by the formation of interactions. Terahertz (THz) spectroscopy exhibits strong responses to the crystalline poly(lactic acid) (PLA). Therefore, we estimate the relative crystallinity and investigate the effect of conformational transition on the vibration of PLA by THz spectroscopy.
View Article and Find Full Text PDFThe terahertz (THz) band contains a wealth of information about vibration and rotational energy levels, most of the vibration modes between amino acid molecules are in the THz band, so it reflects many unique absorption characteristics in the THz band. The use of terahertz time-domain spectroscopy can not only effectively identify different kinds of amino acids but also distinguish various isomers of the same amino acid due to the varied vibration modes. The absorption spectra of four stereoisomers of threonine were investigated by terahertz time-domain spectroscopy (THz-TDS) and Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFDetermining the configuration and conformation of peptides is crucial for interpreting their structure-property relationships. In this work, we present nondestructive terahertz time-domain spectroscopy combined with density functional theory (DFT) and potential energy distribution (PED) analysis to identify the hierarchical structures of oligopeptides. The characteristic THz spectra of silk fibroin oligopeptides have been measured.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2022
Under heating conditions, L-Glutamic acid (L-Glu) can be dehydrated to form L-pyroglutamic acid (L-PGA), and L-PGA can racemize to form DL-PGA. Here, we characterized this transformation at different temperatures and times by terahertz time domain spectroscopy (THz-TDS). By Powder X-ray diffraction (PXRD), the validity of THz spectroscopy is verified.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2022
The study of secondary structure is essential for understanding peptides and proteins. Here, we measured the terahertz (THz) spectra of γ-polyglutamic acid (γ-PGA) dominated by α-helix and random coil (RC) respectively. The α-helix has two absorption peaks in the THz region, but no absorption peak is observed in the RC conformation.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2022
Hydroxyproline (HYP) and pyroglutamic acid (PGA), as amino acid derivatives, are highly similar in structure to proline (Pro). However, their low-frequency vibrations show significant differences in the range of 0.25-2.
View Article and Find Full Text PDF