Crystal engineering of metal halide hybrids is critical to investigate their structure-property relationship and advance their photophysical applications, but there have been limited efforts to employ coordination chemistry to precisely control the dimensionality of metal halide sublattices. Herein, we present a coordination-assembly synthetic strategy developed for the rational modulation of lead halide dimensionality, realizing the transition from 2D to 3D architectures. This manipulation is achieved by utilizing three organocarboxylates featuring the identical cyclohexane backbone unit.
View Article and Find Full Text PDFConspectusOrganolead halide-based photovoltaics are one of the state-of-the-art solar cell systems with efficiencies increasing to 25% over the past decade, ascribed to their high light-absorption coefficient, broad wavelength coverage, tunable band structure, and excellent carrier mobility. Indeed, these optical characteristics are highly demanding in photocatalysis and photoluminescence (PL), which also involve the solar energy utilization and charge transport. However, the vast majority of organolead halides are ionically bonded structures and susceptible to degradation upon high-polarity protic molecules (e.
View Article and Find Full Text PDF