Malaria can spread quickly in the population and develop rapidly. Patients with malaria usually die due to lack of timely and effective treatment. Artesunate (AS) is a highly effective and low-toxicity antimalarial drug, but its short half-life in the blood makes it difficult to control the malaria infection completely.
View Article and Find Full Text PDFEur J Pharm Biopharm
August 2022
With the rapid increase in multidrug-resistance against antibiotics, higher doses of antibiotics or more effective antibiotics are needed to treat diseases, which ultimately leads to a decrease in the body's immunity and seriously threatens human health worldwide. The efficiency of antibiotics has been a large challenge for years. To overcome this problem, many carriers are utilized for anti-bacteria, attempting to optimize the delivery of such drugs and transport them safely and directly to the site of disease.
View Article and Find Full Text PDFRed blood cells (RBCs) are biocompatible carriers that can be employed to deliver different bioactive substances. In the past few decades, many strategies have been developed to encapsulate or attach drugs to RBCs. Osmotic-based encapsulation methods have been industrialized recently, and some encapsulated RBC formulations have reached the clinical stage for treating tumors and neurological diseases.
View Article and Find Full Text PDFMultiple drug resistance (MDR) in bacterial infections is developed with the abuse of antibiotics, posing a severe threat to global health. Tedizolid phosphate (TR-701) is an efficient prodrug of tedizolid (TR-700) against gram-positive bacteria, including methicillin-sensitive staphylococcus aureus (MSSA) and methicillin-resistant staphylococcus aureus (MRSA). Herein, a novel drug delivery system: Red blood cell membrane (RBCM) coated TR-701-loaded polylactic acid-glycolic acid copolymer (PLGA) nanoparticles (RBCM-PLGA-TR-701NPs, RPTR-701Ns) was proposed.
View Article and Find Full Text PDF