Strong fluorescence and high catalytic activities cannot be achieved simultaneously due to conflicts in free electron utilization, resulting in a lack of bioactivity of most near-infrared-II (NIR-II) fluorophores. To circumvent this challenge, we developed atomically precise Au clusters with strong NIR-II fluorescence ranging from 950 to 1300 nm exhibiting potent enzyme-mimetic activities through atomic engineering to create active Cu single-atom sites. The developed AuCu clusters show 18-fold higher antioxidant, 90-fold higher catalase-like, and 3-fold higher superoxide dismutase-like activities than Au clusters, with negligible fluorescence loss.
View Article and Find Full Text PDFNatural enzymes are efficient and versatile biocatalysts but suffer in their environmental tolerance and catalytic stability. As artificial enzymes, nanozymes can improve the catalytic stability, but it is still a challenge to achieve high catalytic activity. Here, we employed atomic engineering to build the artificial enzyme named AuAg clusterzyme that hosts an ultrahigh catalytic activity as well as strong physiological stability via atom manipulation.
View Article and Find Full Text PDFNanozymes have been widely used as highly active and stable arterial enzymes due to their controllable electronic transfer and unique catalytic reaction route. However, the development of nanozymes is hindered by their ambiguous structure, insufficient activity and inadequate substrate selectivity. In comparison, single-atom nanozymes (SAzymes) hold superior catalytic activity 10-100 times higher than conventional nanozymes by maximizing the utilization of metal atom dispersion, and exhibit versatile catalytic selectivity through precisely adjusting the atom spatial configuration.
View Article and Find Full Text PDF