In the rapidly evolving field of deep learning, Convolutional Neural Networks (CNNs) retain their unique strengths and applicability in processing grid-structured data such as images, despite the surge of Transformer architectures. This paper explores alternatives to the standard convolution, with the objective of augmenting its feature extraction prowess while maintaining a similar parameter count. We propose innovative solutions targeting depthwise separable convolution and standard convolution, culminating in our Multi-scale Progressive Inference Convolution (MPIC).
View Article and Find Full Text PDFBackground: As one of the most widely planted fruit trees in southern China, citrus occupies an important position in the agriculture field and forestry economy in China. There are many kinds of citrus diseases. If citrus infected with diseases cannot be controlled in time, it easily seriously affects citrus production and causes large economic losses.
View Article and Find Full Text PDFThe growth of strawberry plants is affected by a variety of strawberry leaf diseases. Yet, due to the complexity of these diseases' spots in terms of color and texture, their manual identification requires much time and energy. Developing a more efficient identification method could be imperative for improving the yield and quality of strawberry crops.
View Article and Find Full Text PDF