The enzyme 6-phosphofructokinase-1 (PFK1) acts as the primary rate-limiting enzyme in glycolysis, catalyzing the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate. This glycolytic process provides essential substrates for the synthesis of sex pheromones. However, the specific function of PFK1 in sex pheromone biosynthesis remains unidentified.
View Article and Find Full Text PDFSex pheromones emitted by female moths play important roles in mate attraction. The molecular mechanism underlying pheromone biosynthesis activating neuropeptide (PBAN)-regulated sex pheromone biosynthesis has been well elucidated in many moth species, although this mechanism is species-dependent. Spodoptera litura, an important pest, has caused serious economic losses to agricultural production, yet the mechanism for its sex pheromone biosynthesis has not been fully identified.
View Article and Find Full Text PDFAn -heterocyclic carbene-catalyzed [4 + 2] annulation of β,γ-unsaturated α-keto esters and phenylacetate esters was developed for the direct and efficient construction of 2-pyrones. This approach provides a practical synthesis pathway for various 3,4,6-trisubstituted 2-pyrones in moderate to good yields and features broad substrate scope and good functional group tolerance. Moreover, the products can also be readily transformed to naphthalene and acylamide.
View Article and Find Full Text PDFCu-catalyzed domino decyanation and cyanation reaction of acyl cyanides with amines or alcohols have been developed. The cyano sources were generated in situ via C-CN cleavage yielding the corresponding cyano substituted amides or esters in moderate to excellent yields. This approach features a cheap copper catalyst, domino decyanation and cyanation reaction, readily available starting materials, broad substrate scope, operational simplicity, and the potential for further transformation of the cyano group.
View Article and Find Full Text PDF