Chemoautotrophic Cupriavidus necator H16 has a strong protein synthesis ability and has been used to produce intracellular protein products. However, studies optimizing its secretion system and the producing extracellular enzyme products (EEPs) are lacking. Here, we focused on investigating the feasibility of synthesizing and secreting EEPs in C.
View Article and Find Full Text PDFElevated CO emissions have substantially altered the worldwide climate, while the excessive reliance on fossil fuels has exacerbated the energy crisis. Therefore, the conversion of CO into fuel, petroleum-based derivatives, drug precursors, and other value-added products is expected. Cupriavidus necator H16 is the model organism of the "Knallgas" bacterium and is considered to be a microbial cell factory as it can convert CO into various value-added products.
View Article and Find Full Text PDFUtilization of all major components of lignocellulose is essential for biomass biorefining. Glucose, xylose, and lignin-derived aromatics can be generated from cellulose, hemicellulose, and lignin of lignocellulose degradation through pretreatment and hydrolysis. In present work, Cupriavidus necator H16 was engineered to utilize glucose, xylose, p-coumaric acid, and ferulic acid simultaneously by multi-step genetic engineering.
View Article and Find Full Text PDFJ Agric Food Chem
December 2021
Farnesene, as an important sesquiterpene isoprenoid polymer of acetyl-CoA, is a renewable feedstock for diesel fuel, polymers, and cosmetics. It has been widely applied in agriculture, medicine, energy, and other fields. In recent years, farnesene biosynthesis is considered a green and economical approach because of its mild reaction conditions, low environmental pollution, and sustainability.
View Article and Find Full Text PDFCupriavidus necator H16 is an ideal strain for polyhydroxybutyrate (PHB) production from CO. Low-oxygen stress can induce PHB synthesis in C. necator H16 while reducing bacterial growth under chemoautotrophic culture.
View Article and Find Full Text PDFThe oxygen-limiting condition promotes the accumulation of ployhydroxybutyrate (PHB) in C. necator H16, while the growth of which is restricted. Under autotrophic culture using carbon dioxide, hydrogen, and oxygen as substrates, the oxygen concentration below 6.
View Article and Find Full Text PDFInvestigation of carbon steel corrosion influenced by in-situ microbial communities can provide reliable information about microbiologically influenced corrosion (MIC) in the oil and gas field. Here, we investigated the 90-day corrosion behavior of Q235 carbon steel influenced by interior deposit microflora of an in-service pipeline using open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). Linear sweep voltammetry (LSV), 16S rRNA gene sequencing, and surface analysis were used to comprehensively analyze the corrosion mechanisms.
View Article and Find Full Text PDF