Publications by authors named "Ruofei Zhong"

Article Synopsis
  • V2X communication is evolving with the introduction of holographic intersections, which enhance smart transportation through collaborative perception and decision-making.
  • An automated vehicle distance detection and warning system using camera streams and edge computing is proposed for improved roadside information accuracy.
  • Experimental results demonstrate high precision in distance detection, contributing to traffic safety and supporting intelligent connected and autonomous vehicles at these advanced intersections.
View Article and Find Full Text PDF

Calibration of sensors is critical for the precise functioning of lidar-IMU systems. However, the accuracy of the system can be compromised if motion distortion is not considered. This study proposes a novel uncontrolled two-step iterative calibration algorithm that eliminates motion distortion and improves the accuracy of lidar-IMU systems.

View Article and Find Full Text PDF

Recognizing traffic signs is key to achieving safe automatic driving. With the decreasing cost of LiDAR, the accurate extraction of traffic signs using point cloud data has received wide attention. In this study, we propose combining point cloud and image traffic sign extraction: firstly, we use the improved YoloV3 model to detect traffic signs in panoramic images.

View Article and Find Full Text PDF

Efficient, high-precision, and automatic measurement of tunnel structural changes is the key to ensuring the safe operation of subways. Conventional manual, static, and discrete measurements cannot meet the requirements of rapid and full-section detection in subway construction and operation. Mobile laser scanning technology is the primary method for tunnel detection.

View Article and Find Full Text PDF

Traditional precision measurement adopts discrete artificial static observation, which cannot meet the demands of the dynamic, continuous, fine and high-precision holographic measurement of large-scale infrastructure construction and complex operation and maintenance management. Due to its advantages of fast, accurate and convenient measurement, mobile laser scanning technology is becoming a popular technology in the maintenance and measurement of infrastructure construction such as tunnels. However, in some environments without satellite signals, such as indoor areas and underground spaces, it is difficult to obtain 3D data by means of mobile measurement technology.

View Article and Find Full Text PDF

Subway structure safety detection is an important method to ensure the safe operation of trains. Efficient, high-precision, and automatic tunnel clearance detection is the key to ensure safe operations. This study introduces a mobile tunnel scanning system that integrates a scanner, an inertial measurement unit (IMU), and a rail car.

View Article and Find Full Text PDF

To realize the application of super-resolution technology from theory to practice, and to improve microsatellite spatial resolution, we propose a special super-resolution algorithm based on the multi-modality super-CMOS sensor which can adapt to the limited operation capacity of microsatellite computers. First, we designed an oblique sampling mode with the sensor rotated at an angle of 26.56 ∘ ( arctan 1 2 ) to obtain high overlap ratio images with sub-pixel displacement.

View Article and Find Full Text PDF

With the ongoing developments in laser scanning technology, applications for describing tunnel deformation using rich point cloud data have become a significant topic of investigation. This study describes the independently developed CNU-TS-2 mobile tunnel monitoring system for data acquisition, which has an electric system to control its forward speed and is compatible with various laser scanners such as the Faro and Leica models. A comparison with corresponding data acquired by total station data demonstrates that the data collected by CNU-TS-2 is accurate.

View Article and Find Full Text PDF

Manhole covers, which are a key element of urban infrastructure management, have a direct impact on travel safety. At present, there is no automatic, safe, and efficient system specially used for the intelligent detection, identification, and assessment of manhole covers. In this work, we developed an automatic detection, identification, and assessment system for manhole covers.

View Article and Find Full Text PDF

It is valuable to study the land use/land cover (LULC) classification for suburbs. The fusion of Light Detection and Ranging (LiDAR) data and aerial imagery is often regarded as an effective method for the LULC classification; however, more in-depth analysis would be required to explore effective information for enhancing the suburban LULC classification. In this study, first, both aerial imageries and point clouds were simultaneously collected.

View Article and Find Full Text PDF

Indoor space subdivision is an important aspect of scene analysis that provides essential information for many applications, such as indoor navigation and evacuation route planning. Until now, most proposed scene understanding algorithms have been based on whole point clouds, which has led to complicated operations, high computational loads and low processing speed. This paper presents novel methods to efficiently extract the location of openings (e.

View Article and Find Full Text PDF

A rapid, precise and automated means for the regular inspection and maintenance of a large number of tunnels is needed. Based on the depth study of the tunnel monitoring method, the CNU-TS-1 mobile tunnel monitoring system (TS1) is developed and presented. It can efficiently obtain the cross-sections that are orthogonal to the tunnel in a dynamic way, and the control measurements that depend on design data are eliminated.

View Article and Find Full Text PDF

Scan matching, an approach to recover the relative position and orientation of two laser scans, is a very important technique for indoor positioning and indoor modeling. The iterative closest point (ICP) algorithm and its variants are the most well-known techniques for such a problem. However, ICP algorithms rely highly on the initial guess of the relative transformation, which will reduce its power for practical applications.

View Article and Find Full Text PDF

Current atmospheric correction of HJ-1 CCD does not take the aerosol models of Chinese specific regions into consideration. This paper proposes a method of atmospheric correction coupling local aerosol models. Choosing Beijing-Tianjin-Hebei region as the study area, aerosol model parameters of the method on the foundation of AERONET inversion are analyzed and four types of aerosol model parameters of Beijing-Tianjin- Hebei regions are clustered to build the lookup table for the inversion of aerosol optical thickness.

View Article and Find Full Text PDF