Publications by authors named "Ruofei Dai"

N6 methylation at adenosine 1832 (mA1832) of mammalian 18S rRNA, occupying a critical position within the decoding center, is modified by a conserved methyltransferase, METTL5. Here, we find that METTL5 shows strong substrate preference toward the 18S A1832 motif but not the other reported mA motifs. Comparison with a yeast ribosome structural model unmodified at this site indicates that the modification may facilitate mRNA binding by inducing conformation changes in the mammalian ribosomal decoding center.

View Article and Find Full Text PDF

SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Meiotic recombination is initiated by the formation of double-strand breaks (DSBs), which are repaired as either crossovers (COs) or noncrossovers (NCOs). In most mammals, PRDM9-mediated H3K4me3 controls the nonrandom distribution of DSBs; however, both the timing and mechanism of DSB fate control remain largely undetermined. Here, we generated comprehensive epigenomic profiles of synchronized mouse spermatogenic cells during meiotic prophase I, revealing spatiotemporal and functional relationships between epigenetic factors and meiotic recombination.

View Article and Find Full Text PDF

The author would like to add the below information in this correction. A similar study from Chao Lu group was published online on 5 September 2019 in Nature, entitled "The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape" (Weinberg et al., 2019).

View Article and Find Full Text PDF

We apologize for an error introduced during format conversion in the paper published online on 18 October 2018. The resolution of the MALDI-TOF result in Fig. 1e underwent an unexpected reduction when transformed from Powerpoint format.

View Article and Find Full Text PDF