The content of fat, oil and grease (FOG) in the sewer network sediments is the key indicator for diagnosing sewer blockage and overflow. However, the traditional FOG detection is time-consuming and costly, and the establishment of mathematical models based on statistical methods to predict the content of FOG fail to provide satisfactory accuracy. Herein, a deep learning algorithm used a data-driven FOG content prediction model is proposed to achieve a more accurate prediction of FOG content.
View Article and Find Full Text PDF