Publications by authors named "Ruobin Gao"

Knowledge distillation (KD) is a conventional method in the field of deep learning that enables the transfer of dark knowledge from a teacher model to a student model, consequently improving the performance of the student model. In randomized neural networks, due to the simple topology of network architecture and the insignificant relationship between model performance and model size, KD is not able to improve model performance. In this work, we propose a self-distillation pipeline for randomized neural networks: the predictions of the network itself are regarded as the additional target, which are mixed with the weighted original target as a distillation target containing dark knowledge to supervise the training of the model.

View Article and Find Full Text PDF

This paper proposes a three-stage online deep learning model for time series based on the ensemble deep random vector functional link (edRVFL). The edRVFL stacks multiple randomized layers to enhance the single-layer RVFL's representation ability. Each hidden layer's representation is utilized for training an output layer, and the ensemble of all output layers forms the edRVFL's output.

View Article and Find Full Text PDF

The lack of intuitive and active human-robot interaction makes it difficult to use upper-limb-assistive devices. In this paper, we propose a novel learning-based controller that intuitively uses onset motion to predict the desired end-point position for an assistive robot. A multi-modal sensing system comprising inertial measurement units (IMUs), electromyographic (EMG) sensors, and mechanomyography (MMG) sensors was implemented.

View Article and Find Full Text PDF

Hospitals can predetermine the admission rate and facilitate resource allocation based on valid emergency requests and bed capacity estimation. The excess unoccupied beds can be determined with the help of forecasting the number of discharged patients. Extracting predictive features and mining the temporal patterns from historical observations are crucial for accurate and reliable forecasts.

View Article and Find Full Text PDF