Soil heavy metal pollution poses a serious threat to food security, human health, and soil ecosystems. Based on 644 soil samples collected from a typical oasis located at the eastern margin of the Tarim Basin, a series of models, namely, multiple linear regression (LR), neural network (BP), random forest (RF), support vector machine (SVM), and radial basis function (RBF), were built to predict the soil heavy metal content. The optimal prediction result was obtained and utilized to analyze the spatial distribution features of heavy metal contamination and relevant health risks.
View Article and Find Full Text PDF