Publications by authors named "Ruo-Nan Hu"

The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes.

View Article and Find Full Text PDF

Tendon regeneration is greatly influenced by the oxidant and the inflammatory microenvironment. Persistent inflammation during the tendon repair can cause matrix degradation, tendon adhesion, and excessive accumulation of reactive oxygen species (ROS), while excessive ROS affect extracellular matrix remodeling and tendon integration. Herein, we used tannic acid (TA) to modify a decellularized tendon slice (DTS) to fabricate a functional scaffold (DTS-TA) with antioxidant and anti-inflammatory properties for tendon repair.

View Article and Find Full Text PDF

Developing highly bioactive scaffold materials to promote stem cell migration, proliferation and tissue-specific differentiation is a crucial requirement in current tissue engineering and regenerative medicine. Our previous work has demonstrated that the decellularized tendon slices (DTSs) are able to promote stem cell proliferation and tenogenic differentiation and show certain pro-regenerative capacity for rotator cuff tendon regeneration . In this study, we present a strategy to further improve the bioactivity of the DTSs for constructing a novel highly bioactive tendon-regenerative scaffold by surface modification of tendon-specific stem cell-derived extracellular matrix (tECM), which is expected to greatly enhance the capacity of scaffold material in regulating stem cell behavior, including migration, proliferation and tenogenic differentiation.

View Article and Find Full Text PDF

Tendon regeneration highly relies on biomechanical and biochemical cues in the repair microenvironment. Herein, we combined the decellularized bovine tendon sheet (DBTS) with extracellular matrix (ECM) from tendon-derived stem cells (TDSCs) to fabricate a biomechanically and biochemically functional scaffold (tECM-DBTS), to provide a functional and stem cell ECM-based microenvironment for tendon regeneration. Our prior study showed that DBTS was biomechanically suitable to tendon repair.

View Article and Find Full Text PDF

A recent study has shown that demineralized cortical bone (DCB) did not improve the healing of tendon-bone interface. Considering that there is a gradient of mineral content in the tendon-bone interface, we designed a segmentally demineralized cortical bone (sDCB) scaffold with two different regions: undemineralized cortical bone section within the scaffold (sDCB-B) and complete demineralized cortical bone section within the scaffold (sDCB-D), to mimic the natural structure of the tendon-bone interface. Furthermore, the extracellular matrix (ECM) from tendon-derived stem cells (TDSCs) was used to modify the sDCB-D region of sDCB to construct a novel scaffold (sDCB-ECM) for enhancing the bioactivity of the sDCB-D.

View Article and Find Full Text PDF

Background: Poor healing of the tendon-bone interface after rotator cuff repair is one of the main causes of surgical failure. Previous studies demonstrated that demineralized cortical bone (DCB) could improve healing of the enthesis.

Purpose: To evaluate the outcomes of hierarchically demineralized cortical bone (hDCB) coated with stem cell-derived extracellular matrix (hDCB-ECM) in the repair of the rotator cuff in a rabbit model.

View Article and Find Full Text PDF

It is highly desirable to develop a novel scaffold that can induce stem cell migration in tendon tissue engineering and regeneration. The objective of this study is to assess the effect of stem cell extracellular matrix-modified decellularized tendon slices (ECM-DTSs) on bone marrow mesenchymal stem cells (BMSCs) migration and explore the possible molecular mechanisms. Native ECM produced by BMSCs and tendon-derived stem cells (TDSCs) was deposited on DTSs, denoted as bECM-DTSs and tECM-DTSs, respectively, and the migration of BMSCs treated with the extracts from ECM-DTSs was studied.

View Article and Find Full Text PDF