Neonatal hypoxic-ischemic encephalopathy (HIE) is worsened by autophagy-induced neuronal damage, with SYNPO2 playing a key role in this process. This study investigates the involvement of SYNPO2 in neuronal autophagy and explores the potential of bone marrow mesenchymal stem cells (BMSCs) to alleviate HIE-induced dysfunction by inhibiting SYNPO2-mediated autophagy. Using in vitro and in vivo neonatal HIE models, we observed an upregulation of SYNPO2 expression, accompanied by increased neuronal injury and aggregation of autophagy-related proteins.
View Article and Find Full Text PDFFour new species of the Mesolycus ilyai species group are described from China, namely, M. baoi sp. nov.
View Article and Find Full Text PDFNPJ Parkinsons Dis
October 2024
Numerous brain diseases have been attributed to abnormalities in the connections of neural circuits. Exploration of neural circuits may give enlightenment in treating some intractable brain diseases. Here, we screened all publications on neural circuits in the Web of Science database from 2007 to 2022 and analyzed the research trends through VOSviewer, CiteSpace, Microsoft Excel 2019, and Origin.
View Article and Find Full Text PDFAntimicrobial resistance has attracted worldwide attention and remains an urgent issue to resolve. Discovery of novel compounds is regarded as one way to circumvent the development of resistance and increase the available treatment options. Gossypol is a natural polyphenolic aldehyde, and it has attracted increasing attention as a possible antibacterial drug.
View Article and Find Full Text PDFObjective: Numerous pathological variations and complex interactions are involved in the long period prior to cognitive decline in brains with Alzheimer's disease (AD). Thus, elucidation of the pathological disorders can facilitate early AD diagnosis. The aim of this study was to investigate the age-specific pathological changes of β-amyloid plaques in brain tissues of AD mice at different ages.
View Article and Find Full Text PDFTo screen out the prospective biomarkers of viral encephalitis (VE), analyze the biological process and signaling pathways involved by differentially expressed proteins (DEPs). A total of 11 cerebrospinal fluid (CSF) samples with VE and 5 with non-nervous system infection were used to perform label-free proteomic techniques. Then, the bioinformatic analysis of DEPs was applied by Interproscan software.
View Article and Find Full Text PDFInhibition of bacterial cell division is a novel mechanistic action in the development of new antimicrobial agents. The FtsZ protein is an important antimicrobial drug target because of its essential role in bacterial cell division. In the present study, potential inhibitors of FtsZ were identified by virtual screening followed by and bioassays.
View Article and Find Full Text PDFIt has been reported that Neonatal hypoxic-ischemic encephalopathy (HIE) could induce apoptosis in neonates and result in cognitive and sensory impairments, which are associated with poor developmental outcomes. Despite the improvement in neonatology, there is still no clinically effective treatment for HIE presently. Long non-coding RNAs (lncRNAs) play important roles in cellular homeostasis.
View Article and Find Full Text PDFNeonatal hypoxic-ischemic encephalopathy (HIE), is a major cause of neurologic disorders in terms of neonates, with the unclear underlying mechanisms. In the study, triphenyl tetrazolium chloride (TTC) staining and Zea-longa score were performed to examine the neurologic damage in hypoxia and ischemia (HI) rats. The results showed that HI induced obviously infarct and serious neurologic impairment in neonatal rats.
View Article and Find Full Text PDFBackground: Hypoxic-ischemic encephalopathy (HIE) could induce exacerbated changes and unpredictable effects in brain cells, and the mechanism remains unclear.
Methods: HIE model was established in neonatal rats, Zea-Longa score and TTC staining were used to observe the neurobehavior and brain infarct volume in rats subjected to cerebral hypoxia-ischemia (HI). Primary cortical neurons were then cultured to establish an oxygen and glucose deprivation model.
Neonatal hypoxic-ischemic (HI) injury derived from asphyxia during perinatal period, is a serious complication of neonatal asphyxia and the main cause of neonatal acute death and chronic neurological injury. Aberrant autophagy occurs in many nervous system diseases, but its role and underlying mechanism in HI injury is largely unknown. Here, we successfully constructed a newborn rat model of HI brain injury, and the knockout-miR-127-3p (KO-miR-127-3p) rats were structured by using CRISPR/Cas9.
View Article and Find Full Text PDFTo investigate the therapeutic efficacy of Scutellarin (SCU) on neurite growth and neurological functional recovery in neonatal hypoxic-ischemic (HI) rats. Primary cortical neurons were cultured to detect the effect of SCU on cell viability of neurons under oxygen-glucose deprivation (OGD). Double immunofluorescence staining of Tuj1 and TUNEL then observed the neurite growth and cell apoptosis and double immunofluorescence staining of NEUN and TUNEL was performed to examine the neuronal apoptosis and cell apoptosis in brain tissues after HI .
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) regulates many neurological functions and plays a vital role during the recovery from central nervous system injuries. However, the changes in BDNF expression and associated factors following hypoxia-ischemia induced neonatal brain damage, and the significance of these changes are not fully understood. In the present study, a rat model of hypoxic-ischemic brain damage was established through the occlusion of the right common carotid artery, followed by 2 hours in a hypoxic-ischemic environment.
View Article and Find Full Text PDFNeonatal hypoxic ischemic encephalopathy (HIE) due to birth asphyxia is common and causes severe neurological deficits, without any effective therapies currently available. Neuronal death is an important driving factors of neurological disorders after HIE, but the regulatory mechanisms are still uncertain. Long non-coding RNA (lncRNA) or ceRNA network act as a significant regulator in neuroregeneration and neuronal apoptosis, thus owning a great potential as therapeutic targets in HIE.
View Article and Find Full Text PDF