Cell membrane stiffness is critical for cellular function, with cholesterol and sphingomyelin as pivot contributors. Current methods for measuring membrane stiffness are often invasive, ex situ, and slow in process, prompting the need for innovative techniques. Here, we present a fluorescence resonance energy transfer (FRET)-based protein sensor designed to address these challenges.
View Article and Find Full Text PDFWe proposed a method to regulate nucleic acid polymerization by proximity and designed an ultrasensitive biosensor based on proximity-induced exponential amplification reaction for proximity assay of proteins (streptavidin) and small molecules (adenosine triphosphate), which allows us to detect a variety of interesting targets by simply changing the binding sites of DNA.
View Article and Find Full Text PDF