Publications by authors named "Ruo-Hong Li"

Wastewater treatment plants face significant challenges in transitioning from energy-intensive systems to carbon-neutral, energy-saving systems, and a large amount of chemical energy in wastewater remains untapped. Iron is widely used in modern wastewater treatment. Research shows that leveraging the coupled redox relationship of iron and carbon can redirect this energy (in the form of carbon) towards resource utilization.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied tiny living things (microbes) in a special tank (bioreactor) that produces a material called polyhydroxyalkanoates (PHAs) from leftover food and sludge.
  • They found that the microbes changed a lot depending on what food they were given, and they worked better in teams to produce PHAs.
  • The researchers also discovered new types of microbes that can make PHAs from garbage, helping us understand more about how mixed-culture systems work to recycle waste.
View Article and Find Full Text PDF

The transformation of Fe-P complexes in bioreactors can be important for phosphorus (P) recovery from sludge. In this research, X-ray absorption near-edge structure analysis was conducted to quantify the transformation of Fe and P species in the sludge of different aging periods and in the subsequent acidogenic cofermentation for P recovery. P was readily removed from wastewater by Fe-facilitated coprecipitation and adsorption and could be extracted and recovered from sludge via acidogenic cofermentation and microbial iron reduction with food waste.

View Article and Find Full Text PDF

Ceramic membranes allow a high filtration flux with a low fouling propensity. Direct filtration of municipal wastewater using flat-sheet ceramic membranes (FSCM) is an attractive and promising technology for wastewater treatment and resource recovery. Urgent need is to determine the fouling behavior of FSCM and its optimal cleaning strategy in direct filtration applications.

View Article and Find Full Text PDF

A laboratory-scale sequencing batch reactor (SBR) and two moving bed biofilm reactors (MBBRs) with different types of biocarriers were operated to treat the effluent of chemically enhanced primary sedimentation (CEPS). Due to the low organic strength and low carbon/nitrogen ratio of the CEPS effluent, COD and NH-N were effectively removed by the MBBRs but not by the SBR. Of the two MBBRs, MBBR2 filled with LEVAPOR biocarrier cubes performed even better than MBBR1 filled with K3 polystyrene biocarriers.

View Article and Find Full Text PDF

Direct membrane filtration (DMF) is considered as a promising technology for municipal wastewater treatment. We utilized an innovative application of flat-sheet ceramic membranes (FSCM) for DMF for the rapid treatment of domestic sewage. Coagulation was applied before FSCM filtration to increase the pollutant removal and to mitigate membrane fouling.

View Article and Find Full Text PDF

A novel acidogenic phosphorus recovery (APR) process was developed in combination with Fe(III)-based chemical phosphorus removal and a membrane bioreactor (MBR) for enhanced wastewater treatment and effective P recovery. Two different system configurations were evaluated: Fe-dosing MBR (Fe-MBR), with the Fe-dosing into the MBR, and Fe-enhanced primary sedimentation followed by the MBR (FeP-MBR). The results show that both systems performed well for enhanced nutrient (N and P) removals and P recovery, with approximately 50% of the total P recovered from the municipal wastewater in the form of vivianite.

View Article and Find Full Text PDF

A new phosphorus (P) removal and recovery process that integrates an FeCl-dosing, membrane bioreactor (MBR), and side-stream cofermentation was developed for wastewater treatment. The Fe and P species and their transformation mechanisms via aerobic and anaerobic conditions were investigated with X-ray absorption near edge structure (XANES) spectroscopy. In the new treatment system, 98.

View Article and Find Full Text PDF

An integrated membrane bioreactor (MBR) system was developed for enhanced nutrient (N and P) removal and effective P recovery in wastewater treatment. The system consisted of an iron-dosing MBR and side-stream fermentation for P removal and recovery and side-stream denitrification for N removal. Around 98.

View Article and Find Full Text PDF

A novel phosphorous (P) removal and recovery process using a membrane bioreactor (MBR) with ferric iron dosing and acidogenic co-fermentation was developed for municipal wastewater treatment. The very different solubility of Fe(III)-P and Fe(II)-P complex and the microbial transformation of Fe(III) to Fe(II) were utilized for P removal and recovery. By means of Fe-induced precipitation, chemical P removal was effectively achieved by an MBR with a flat-plate ceramic membrane; however, the Fe(III)-P solids accumulated in the MBR that constituted a significant fraction of the activated sludge.

View Article and Find Full Text PDF

A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant.

View Article and Find Full Text PDF

Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), a ubiquitin-like protein, mainly functions through covalent ligation to cullin proteins. Conjugation of NEDD8 with cullins can promote ubiquitination, which plays a critical role in the degradation of many proteins. UBA3 is the subunit of NEDD8- activating enzyme which is one of the keys for NEDD8 linkage to cullin proteins.

View Article and Find Full Text PDF