Publications by authors named "Ruo Xi Yang"

Article Synopsis
  • The black perovskite phase of CsPbI is highly suitable for optoelectronic uses but suffers from instability, quickly transitioning to a non-functional yellow phase when exposed to ambient conditions.
  • Researchers incorporated a PbI-based microstructure into the CsPbI thin films using coarse photolithography, which helps prevent moisture-related degradation and significantly enhances the long-term stability of the black phase for over 2.5 years in dry conditions.
  • This innovative stabilization approach allows unencapsulated CsPbI photodetectors to operate stably in ambient conditions, offering new insights into phase destabilization in these devices and presenting a novel solution distinct from previous methods.
View Article and Find Full Text PDF

The recent rise of computational, data-driven research has significant potential to accelerate materials discovery. Automated workflows and materials databases are being rapidly developed, contributing to high-throughput data of bulk materials that are growing in quantity and complexity, allowing for correlation between structural-chemical features and functional properties. In contrast, computational data-driven approaches are still relatively rare for nanomaterials discovery due to the rapid scaling of computational cost for finite systems.

View Article and Find Full Text PDF

Formamidinium lead triiodide (FAPbI ) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium-based perovskites. Crystallization of phase-pure α-FAPbI conventionally requires high-temperature thermal annealing at 150 °C whilst the obtained α-FAPbI is metastable at room temperature.

View Article and Find Full Text PDF

The stability of halide perovskites has been a long-standing issue for their real-world application. Approaches to improve stability include nanostructuring, dimensionality reduction, and strain engineering, where surfaces play an important role in the formation of a stable structure. To understand the mechanism we compute the lattice dynamics of the surface of CsPbI using density functional theory.

View Article and Find Full Text PDF

Excitonic coupling, electronic coupling, and cooperative interactions in self-assembled lead halide perovskite nanocrystals were reported to give rise to a red-shifted collective emission peak with accelerated dynamics. Here we report that similar spectroscopic features could appear as a result of the nanocrystal reactivity within the self-assembled superlattices. This is demonstrated by studying CsPbBr nanocrystal superlattices over time with room-temperature and cryogenic micro-photoluminescence spectroscopy, X-ray diffraction, and electron microscopy.

View Article and Find Full Text PDF

The fabrication of efficient and spectrally stable pure-blue perovskite light-emitting diodes (LEDs) has been elusive and remains of great interest. Herein, we incorporate diammonium salts into quasi-2D perovskite precursors for phase control of multiple quantum well structures to yield tunable and efficient emission in the blue region. With detailed characterizations and computational studies, we show that in situ passivation by the diammonium salts effectively modifies the surface energies of quasi-2D phases and inhibits the growth of low-band gap quasi-2D and 3D phases.

View Article and Find Full Text PDF

Inorganic halide perovskites CsPbX (X = Cl, Br, I) have been widely studied as colloidal quantum dots for their excellent optoelectronic properties. Not only is the long-term stability of these materials improved via nanostructuring, their optical bandgaps are also tunable by the nanocrystal (NC) size. However, theoretical understanding of the impact of the NC size on the phase stability and bandgap is still lacking.

View Article and Find Full Text PDF

Metal halide perovskites are promising candidates for next-generation photovoltaic and optoelectronic applications. The flexible nature of the octahedral network introduces complexity when understanding their physical behavior. It has been shown that these materials are prone to decomposition and phase competition, and the local crystal structure often deviates from the average space group symmetry.

View Article and Find Full Text PDF

The local crystal structures of many perovskite-structured materials deviate from the average space-group symmetry. We demonstrate, from lattice-dynamics calculations based on quantum chemical force constants, that all of the cesium-lead and cesium-tin halide perovskites exhibit vibrational instabilities associated with octahedral titling in their high-temperature cubic phase. Anharmonic double-well potentials are found for zone-boundary phonon modes in all compounds with barriers ranging from 108 to 512 meV.

View Article and Find Full Text PDF

Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH.

View Article and Find Full Text PDF

Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds.

View Article and Find Full Text PDF

Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors.

View Article and Find Full Text PDF