Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA).
View Article and Find Full Text PDFThe products of incomplete destruction (PIDs) of per- and polyfluoroalkyl substances (PFAS) represent a substantial ambiguity when employing thermal treatments to remediate PFAS-contaminated materials. In this study, we present new information on PIDs produced in both inert and oxidative environments from five long-chain PFAS, including three now regulated under the U.S.
View Article and Find Full Text PDFMenaquinone (MK) in bacterial membrane is an attractive target for the development of novel therapeutic agents. Mining the untapped chemical diversity encoded by Gram-negative bacteria presents an opportunity to identify additional MK-binding antibiotics (MBAs). By MK-binding motif searching of bioinformatically predicted linear non-ribosomal peptides from 14,298 sequenced genomes of 45 underexplored Gram-negative bacterial genera, here we identify a novel MBA structural family, including silvmeb and pseudomeb, using structure prediction-guided chemical synthesis.
View Article and Find Full Text PDFThe resurrection plant Boea hygrometrica selectively recruits and assembles drought-specific microbial communities across the plant-soil compartments, which may benefit plant growth and fitness under extreme drought conditions. Plant-associated microbes are essential for facilitating plant growth and fitness under drought stress. The resurrection plant Boea hygrometrica in natural habitats with seasonal rainfall can survive rapid desiccation, yet their interaction with microbiomes under drought conditions remains unexplored.
View Article and Find Full Text PDFThe emergence of multidrug-resistant Gram-negative pathogens poses a serious threat to global health. Gram-negative bacteria have become increasingly recognized as underexplored sources of Gram-negative-active cationic lipopeptide (CLP) antibiotics. We systematically screened 8982 sequenced genomes from 42 underexplored Gram-negative bacterial genera and identified eight potential CLP biosynthetic gene clusters.
View Article and Find Full Text PDFSubstantial advancements have been made in our comprehension of vegetative desiccation tolerance in resurrection plants, and further research is still warranted to elucidate the mechanisms governing distinct cellular adaptations. Resurrection plants are commonly referred to as a small group of extremophile vascular plants that exhibit vegetative desiccation tolerance (VDT), meaning that their vegetative tissues can survive extreme drought stress (> 90% water loss) and subsequently recover rapidly upon rehydration. In contrast to most vascular plants, which typically employ water-saving strategies to resist partial water loss and optimize water absorption and utilization to a limited extent under moderate drought stress, ultimately succumbing to cell death when confronted with severe and extreme drought conditions, resurrection plants have evolved unique mechanisms of VDT, enabling them to maintain viability even in the absence of water for extended periods, permitting them to rejuvenate without harm upon water contact.
View Article and Find Full Text PDFHeat-shock transcription factors (HSFs) are crucial for regulating plant responses to heat and various stresses, as well as for maintaining normal cellular functions and plant development. HSFA9 and HSFA2 are two of the Arabidopsis class A HSFs and their expressions are dramatically induced in response to heat shock (HS) stress among all 21 Arabidopsis HSFs. However, the detailed biological roles of their cooperation have not been fully characterized.
View Article and Find Full Text PDFThis study presents a novel thermal technology (high-frequency heating, HFH) for the decontamination of soil containing per- and polyfluoroalkyl substances (PFAS) and aqueous film-forming foams (AFFFs). Ultra-fast degradation of short-chain PFAS, long-chain homologs, precursors, legacy PFAS, emerging PFAS was achieved in a matter of minutes. The concentrations of PFAS and the soil type had a negligible impact on degradation efficiency, possibly due to the ultra-fast degradation rate overwhelming potential differences.
View Article and Find Full Text PDFIn this study, we have developed an innovative thermal degradation strategy for treating per- and polyfluoroalkyl substance (PFAS)-containing solid materials. Our strategy satisfies three criteria: the ability to achieve near-complete degradation of PFASs within a short timescale, nonselectivity, and low energy cost. In our method, a metallic reactor containing a PFAS-laden sample was subjected to electromagnetic induction that prompted a rapid temperature rise of the reactor via the Joule heating effect.
View Article and Find Full Text PDFIn this study, we investigated the thermal decomposition mechanisms of perfluoroalkyl ether carboxylic acids (PFECAs) and short-chain perfluoroalkyl carboxylic acids (PFCAs) that have been manufactured as replacements for phased-out per- and polyfluoroalkyl substances (PFAS). C-C, C-F, C-O, O-H, and C═C bond dissociation energies were calculated at the M06-2X/Def2-TZVP level of theory. The α-C and carboxyl-C bond dissociation energy of PFECAs declines with increasing chain length and the attachment of an electron-withdrawing trifluoromethyl (-CF) group to the α-C.
View Article and Find Full Text PDFBenzylisoquinoline alkaloids (BIAs) are a large family of plant natural products with important pharmaceutical applications. is a medicinal plant from the Menispermaceae family and has been used to treat rheumatoid arthritis for hundreds of years. contains more than 50 BIAs, and sinomenine is a representative BIA from this plant.
View Article and Find Full Text PDFPyrolysis as a thermochemical technology is commonly used in waste management and remediation of organic-contaminated soil. This study, for the first time, investigated fluorinated and non-fluorinated compounds emitted from per- and polyfluoroalkyl substances (PFAS) and relevant products upon pyrolysis (200-890 °C) and their formation mechanisms. Approximately 30 non-fluorinated compounds were detected from PFAS-containing aqueous film-forming foams (AFFFs) and commercial surfactant concentrates (SCs) after heating, including glycols and glycol ethers that were predominant at 200 °C.
View Article and Find Full Text PDFDrought is one of the major abiotic stresses that threaten wheat production worldwide, especially in the Mongolian Plateau and adjacent regions. This study aims to find local wheat varieties with high yields and drought resistance at various developmental stages based on agronomic traits and drought resistance indices analysis and explore the underlining molecular mechanisms by transcriptome analysis. Our results revealed that drought stress started at the seedling stage has a greater impact on crop yields.
View Article and Find Full Text PDFYangpumicins (YPMs), for example, YPM A, F, and G, are newly discovered enediynes from Micromonospora yangpuensis DSM 45577, which could be exploited as promising payloads of antibody-drug conjugates. However, the low yield of YPMs in the wild-type strain (∼1 mg L ) significantly hampers their further drug development. In this study, a combined ribosome engineering and fermentation optimization strategy has been used for yield improvement of YPMs.
View Article and Find Full Text PDFPre-exposure of plants to various abiotic conditions confers improved tolerance to subsequent stress. Mild drought acclimation induces acquired rapid desiccation tolerance (RDT) in the resurrection plant Boea hygrometrica, but the mechanisms underlying the priming and memory processes remain unclear. In this study, we demonstrated that drought acclimation-induced RDT can be maintained for at least four weeks but was completely erased after 18 weeks based on a combination of the phenotypic and physiological parameters.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2021
Arsenic (As) contamination of aquatic and soil environments is a global concern, highlighting the importance of As removal via high-efficiency and low-cost removal technologies. In the present study, novel trimetallic biochar was developed through pyrolyzing corn straw impregnated with inexpensive metal Fe/Al/Zn (hydr)oxides. The results of SEM, FTIR, and XRD verified the formation of metal oxyhydroxides on the surface of the modified biochars, and the modification increased the specific surface area (SSA), total pore volume (TPV), and surface charge of the Fe/Al/Zn (hydr)oxides modified biochar (FAZ-CB).
View Article and Find Full Text PDFBohemamines (BHMs) are bacterial alkaloids containing a pyrrolizidine core with two unusual methyl groups. Herein we report the activation of BHMs biosynthesis using a ribosome engineering approach. Characterization of the gene cluster reveals that nonribosomal peptide synthetase BhmJ and Baeyer-Villiger monooxygenase BhmK are responsible for the formation of the pyrrolizidine core, which is further methylated on C-7 by methyltransferase BhmG.
View Article and Find Full Text PDFBackground: Basal leaf removal is widely practiced to increase grape cluster sunlight exposure that controls berry rot and improves quality. Studies on its influence on volatile compounds in grape berries have been performed mostly in Mediterranean or marine climate regions. It is uncertain whether similar efficiency can be achieved when grape berries are grown under continental climate.
View Article and Find Full Text PDFBackground: Light conditions significantly influence grape berry ripening and the accumulation of phenolic compounds, but the underlying molecular basis remains partially understood. Here, we applied integrated transcriptomics and pathway-level metabolomics analyses to investigate the effect of cluster bagging during various developmental stages on phenolic metabolism in Cabernet Sauvignon grapes.
Results: Bagging treatments had limited effects on berry quality attributes at harvest and did not consistently affect phenolic acid biosynthesis between seasons.
Plants can regenerate new individuals under appropriate culture conditions. Although the molecular basis of shoot regeneration has steadily been unraveled, the role of age-dependent DNA methylation status in the regulation of explant regeneration remains practically unknown. Here, we established an effective auxin/cytokinin-induced shoot regeneration system for the resurrection plant Boea hygrometrica via direct organogenesis and observed that regeneration was postponed with increasing age of donor plants.
View Article and Find Full Text PDFBoea hygrometrica can survive extreme drought conditions and has been used as a model to study desiccation tolerance. A genome-wide transcriptome analysis of B. hygrometrica showed that the plant can survive rapid air-drying after experiencing a slow soil-drying acclimation phase.
View Article and Find Full Text PDFBread wheat (Triticum aestivum L.) is an allohexaploid, and the transcriptional characteristics of the wheat embryo and endosperm during grain development remain unclear. To analyze the transcriptome, we performed isoform sequencing (Iso-Seq) for wheat grain and RNA sequencing (RNA-Seq) for the embryo and de-embryonated kernels.
View Article and Find Full Text PDFTitanium dioxide nanoparticles co-modified with CuOx (0≤x≤2) and carbonaceous materials were prepared with a simple hydrolysis and photo-reduction method for photocatalytic hydrogen generation. SEM/TEM and XPS analysis indicated that the carbonaceous materials were mostly coated on the TiO2 surface and clearly revealed that the Cu species exhibited multivalence states, existing as CuOx (0≤x≤2). The optimal catalyst showed a 56-fold enhanced hydrogen evolution rate compared with that of the pure C/TiO2 catalyst.
View Article and Find Full Text PDFBackground: Water shortage is a major factor that harms agriculture and ecosystems worldwide. Plants display various levels of tolerance to water deficit, but only resurrection plants can survive full desiccation of their vegetative tissues. Haberlea rhodopensis, an endemic plant of the Balkans, is one of the few resurrection plants found in Europe.
View Article and Find Full Text PDF