Drug discovery relies on efficient identification of small-molecule leads and their interactions with macromolecular targets. However, understanding how chemotypes impact mechanistically important conformational states often remains secondary among high-throughput discovery methods. Here, we present a conformational discovery pipeline integrating time-resolved, high-throughput small-angle X-ray scattering (TR-HT-SAXS) and classic fragment screening applied to allosteric states of the mitochondrial import oxidoreductase apoptosis-inducing factor (AIF).
View Article and Find Full Text PDFChemical probes are invaluable tools for investigating essential biological processes. Understanding how small-molecule probes engage biomolecular conformations is critical to developing their functional selectivity. High-throughput solution X-ray scattering is well-positioned to profile target-ligand complexes during probe development, bringing conformational insight and selection to traditional ligand binding assays.
View Article and Find Full Text PDF