Med Image Comput Comput Assist Interv
October 2024
Graph neural networks (GNNs) are proficient machine learning models in handling irregularly structured data. Nevertheless, their generic formulation falls short when applied to the analysis of brain connectomes in Alzheimer's Disease (AD), necessitating the incorporation of domain-specific knowledge to achieve optimal model performance. The integration of AD-related expertise into GNNs presents a significant challenge.
View Article and Find Full Text PDFProc (IEEE Int Conf Healthc Inform)
June 2023
The coronavirus disease 2019 (COVID-19) has led to a global pandemic of significant severity. In addition to its high level of contagiousness, COVID-19 can have a heterogeneous clinical course, ranging from asymptomatic carriers to severe and potentially life-threatening health complications. Many patients have to revisit the emergency room (ER) within a short time after discharge, which significantly increases the workload for medical staff.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2023
Pairwise learning is an important machine-learning topic with many practical applications. An online algorithm is the first choice for processing streaming data and is preferred for handling large-scale pairwise learning problems. However, existing online pairwise learning algorithms are not scalable and efficient enough for large-scale high-dimensional data, because they were designed based on singly stochastic gradients.
View Article and Find Full Text PDF