Timely delivery of first aid supplies is significant to saving lives when an accident happens. Among the promising solutions provided for such scenarios, the application of unmanned vehicles has attracted ever more attention. However, such scenarios are often very complex, while the existing studies have not fully addressed the trajectory optimization problem of multiple unmanned ground vehicles (multi-UGVs) against the scenario.
View Article and Find Full Text PDFThis article is concerned with the problem of planning optimal maneuver trajectories and guiding the mobile robot toward target positions in uncertain environments for exploration purposes. A hierarchical deep learning-based control framework is proposed which consists of an upper level motion planning layer and a lower level waypoint tracking layer. In the motion planning phase, a recurrent deep neural network (RDNN)-based algorithm is adopted to predict the optimal maneuver profiles for the mobile robot.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
April 2022
This article focuses on the design, test, and validation of a deep neural network (DNN)-based control scheme capable of predicting optimal motion commands for autonomous ground vehicles (AGVs) during the parking maneuver process. The proposed design utilizes a multilayer structure. In the first layer, a desensitized trajectory optimization method is iteratively performed to establish a set of time-optimal parking trajectories with the consideration of noise-perturbed initial configurations.
View Article and Find Full Text PDFConstrained autonomous vehicle overtaking trajectories are usually difficult to generate due to certain practical requirements and complex environmental limitations. This problem becomes more challenging when multiple contradicting objectives are required to be optimized and the on-road objects to be overtaken are irregularly placed. In this article, a novel swarm intelligence-based algorithm is proposed for producing the multiobjective optimal overtaking trajectory of autonomous ground vehicles.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2020
This brief presents an integrated trajectory planning and attitude control framework for six-degree-of-freedom (6-DOF) hypersonic vehicle (HV) reentry flight. The proposed framework utilizes a bilevel structure incorporating desensitized trajectory optimization and deep neural network (DNN)-based control. In the upper level, a trajectory data set containing optimal system control and state trajectories is generated, while in the lower level control system, DNNs are constructed and trained using the pregenerated trajectory ensemble in order to represent the functional relationship between the optimized system states and controls.
View Article and Find Full Text PDFThe objective of this paper is to present an approximation-based strategy for solving the problem of nonlinear trajectory optimization with the consideration of probabilistic constraints. The proposed method defines a smooth and differentiable function to replace probabilistic constraints by the deterministic ones, thereby converting the chance-constrained trajectory optimization model into a parametric nonlinear programming model. In addition, it is proved that the approximation function and the corresponding approximation set will converge to that of the original problem.
View Article and Find Full Text PDFHighly constrained trajectory optimization problems are usually difficult to solve. Due to some real-world requirements, a typical trajectory optimization model may need to be formulated containing several objectives. Because of the discontinuity or nonlinearity in the vehicle dynamics and mission objectives, it is challenging to generate a compromised trajectory that can satisfy constraints and optimize objectives.
View Article and Find Full Text PDFIn this paper, a constrained space maneuver vehicles trajectory optimization problem is formulated and solved using a new three-layer-hybrid optimal control solver. To decrease the sensitivity of the initial guess and enhance the stability of the algorithm, an initial guess generator based on a specific stochastic algorithm is applied. In addition, an improved gradient-based algorithm is used as the inner solver, which can offer the user more flexibility to control the optimization process.
View Article and Find Full Text PDF