Hydroxyl groups on the surface of cellulose nanocrystals (CNC) are modified by chemical methods, CNC and the modified CNC are used as fillers to prepare PHB/cellulose nanocomposites. The absorption peak of carbonyl group of the modified CNC (CNC-CL and CNC-LA) appears in the FT-IR spectra, which proves that the modifications are successful. Thermal stability of CNC-CL and CNC-LA is better than that of pure CNC.
View Article and Find Full Text PDFFor the rational use of agricultural wastes, bagasse, orange peel and wheat bran were used to fabricate bio-based polymer materials. Cellulose was extracted from the three different agricultural wastes, and poly(ε-caprolactone) (PCL) was used as the matrix material. PCL was mixed with nanocrystalline cellulose (CNC), extracted bagasse cellulose (GC), orange peel cellulose (JC) and wheat bran cellulose (MC) by solution casting.
View Article and Find Full Text PDFIn the present study, supercritical fluid was employed to prepare a kind of supercritical fluids-decellularized dermal-based scaffold (SFDDS) from porcine dermal tissue. Further, new composite bioscaffolds containing SFDDS were designed for bioprinting applications. Then, the effect of crosslinking functionality on microstructures and thermal properties of the composite bioscaffolds containing decellularized extracellular matrix were studied.
View Article and Find Full Text PDFA new azobenzene-based symmetric amphiphile was synthesized and characterized using H NMR spectroscopy. Its self-assembly behavior as well as photo-responsive behavior in its solution and gel states were investigated. Such a compound can self-assemble into fiber mesophases in water solvent.
View Article and Find Full Text PDFWater splitting is the most potential method to produce hydrogen energy, however, the conventional electrocatalysts encounter the hindrances of high overpotential and low hydrogen production efficiency. Herein, we report a carbon-based nanocomposite (denoted as CCW-, stands for the calcination temperature) derived from watermelon peels and CoCl, and the as-synthesized CCW- is used as the electrocatalyst. The overpotential and the Tafel slope of CCW-700 for oxygen evolution reaction (OER) is 237 mV at 10 mA cm and 69.
View Article and Find Full Text PDFTo investigate the relationship between functional groups on cellulose nanocrystals (CNC) and the performance of poly(β-hydroxybutyrate-co-valerate) (PHBV), the surface of CNC was modified by surface graft modification and PHBV/CNC biocomposites were prepared by melt blending. To demonstrate the interfacial adhesion difference between hydrophobic PHBV and hydrophilic CNC, palmitoyl chloride and ε-caprolactone had been used to tailor the oleophilic property of CNC. Results showed that CNC had heterogeneous nucleation effect on the crystallization process of PHBV, while the entanglement of molecular chains weakened the promoting functions of CNC-g-C16 (CNC grafted with palmitoyl chloride) and CNC-g-CL (CNC grafted with ε-caprolactone).
View Article and Find Full Text PDFA reactive azobenzene based super organogelator was found to rapidly and reversibly transform a range of hydrophobic solvents from gels to solutions upon changes in temperature, light and shear force. More specifically they formed gels at concentrations as low as 0.08 wt%.
View Article and Find Full Text PDFPoor compatibility was the major drawback of polymer mixtures when used as DNA separation media. Using poly(ethylene oxide)-b-poly(N, N-dimethylacrylamide) (PEO(44)-b-PDMA(88)) and PEO (M(w): 1.3 MDa) as an example, we demonstrated the concept that the compatibility was significantly improved when mixing a homopolymer with its copolymer.
View Article and Find Full Text PDFA new matrix additive, poly (N,N-dimethylacrylamide)-functionalized gold nanoparticle (GNP-PDMA), was prepared by "grafting-to" approach, and then incorporated into quasi-interpenetrating network (quasi-IPN) composed of linear polyacrylamide (LPA, 3.3 MDa) and PDMA to form novel polymer/metal composite sieving matrix (quasi-IPN/GNP-PDMA) for DNA sequencing by capillary electrophoresis. Without complete optimization, quasi-IPN/GNP-PDMA yielded a readlength of 801 bases at 98% accuracy in about 64 min by using the ABI 310 Genetic Analyzer at 50 degrees C and 150 V/cm.
View Article and Find Full Text PDFA novel graft copolymer, hydroxyethylcellulose-graft-poly (4-vinylpyridine), used as a physically adsorbed coating of the fused-silica (FS) capillaries, was synthesized by using ceric ammonium nitrate initiator in aqueous nitric acid solution. EOF measurements showed that the above graft copolymer coating of the FS capillaries could suppress EOF effectively compared with the bare FS capillaries. The adsorbed coating exhibited minimal interactions with proteins, providing efficient protein separations with excellent repeatability.
View Article and Find Full Text PDFPoly(N, N-dimethylacrylamide) (PDMA)-functionalized multi-walled carbon nanotubes (MWNT-PDMA) were prepared via atom transfer radical polymerization and then added into quasi-interpenetrating network (quasi-IPN) composed of linear polyacrylamide (3.3 MDa) and PDMA to form polymer/nanotube double-network composite sieving matrices for DNA sequencing by CE. The CE results show that, compared with quasi-IPN, the novel composite matrices can improve ssDNA sequencing performances due to the formation of a double-network consisting of a flexible quasi-IPN polymer network and a rigid MWNT network based on a unique tubular structure, which makes the total sieving networks more restricted and stable and increases the apparent molecular weight of the matrices.
View Article and Find Full Text PDFA new multifunctional separation medium, hydroxyethylcellulose-graft-poly (N,N-dimethylacrylamide) copolymer synthesized in our laboratory for application in both basic protein separation and dsDNA separation by CE, is presented in this paper. As a noncovalent coating, this medium showed a powerful capability in resisting basic protein adsorption. Highly efficient and rapid protein separation had been obtained at four different pH values.
View Article and Find Full Text PDFA series of well-defined diblock copolymers, poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO-b-P4VP) used as physical coating of capillaries, were synthesized by atom transfer radical polymerization (ATRP). EOF measurement results showed that all synthesized PEO-b-P4VP diblock copolymer-coated capillaries in this report could suppress EOF effectively compared to the bare fused-silica capillaries, and efficient separations of basic proteins were achieved. The effects of the molecular weight of P4VP block in PEO-b-P4VP and buffer pH on the separation of basic proteins for CE were investigated in detail.
View Article and Find Full Text PDFWe present cationized hydroxyethylcellulose (cat-HEC) synthesized in our laboratory as a novel physically adsorbed coating for CE. This capillary coating is simple and easy to obtain as it only requires flushing the capillary with polymer aqueous solution. A comparative study with and without polymers was performed.
View Article and Find Full Text PDFA novel separation medium, hydroxyethylcellulose-graft-polyacrylamide (HEC-g-PAM) synthesized by atom transfer radical polymerization (ATRP), used for dsDNA separation by CE is presented. The separation performance of HEC-g-PAM, which has the same graft density and different graft length, has been investigated in Tris-boric acid-EDTA (TBE) buffer solvent mixtures. The temperature-dependent rheological behavior of HEC-g-PAM was also studied by steady-shear rheometry.
View Article and Find Full Text PDFGold nanoparticles (GNPs) with particle sizes of about 20, 40, and 60 nm were prepared and added into a quasi-interpenetrating network (quasi-IPN) composed of linear polyacrylamide (LPA) with different viscosity-average molecular masses of 1.5, 3.3, and 6.
View Article and Find Full Text PDFIn order to further improve ssDNA sequencing performances using quasi-interpenetrating network (quasi-IPN) as a matrix composed of linear polyacrylamide (LPA) with lower viscosity-average molecular mass (3.3 MDa) and poly(N,N-dimethylacrylamide) (PDMA), gold nanoparticles (GNPs) were prepared and added into this quasi-IPN to form polymer/metal composite sieving matrices. The studies of intrinsic viscosity and differential scanning calorimetry (DSC) on quasi-IPN and quasi-IPN/GNPs indicate that there were interactions between GNPs and polymer chains.
View Article and Find Full Text PDF