Photodynamic therapy (PDT) eradicates tumor cells by the light-stimulated reactive oxygen species, which also induces lipid peroxidation (LPO) and subsequently ferroptosis, an iron-depended cell death. Ferroptosis has a tremendous therapeutic potential in cancer treatment, however, the ferroptosis efficiency is largely limited by the available iron in cells. Through hijacking the CD44-mediated iron endocytosis of hyaluronan (HA), here PDT with enhanced ferroptosis was realized by a HA@Ce6 nanogel self-assembled from HA, a photosensitizer Chlorin e6 (Ce6) and Fe as cross-linkers.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) have emerged as therapeutic interests in cancer nanomedicine because TAMs play a pivotal role in the immune microenvironment of solid tumors. Dextran and its derived nanocarriers are among the most promising nanomaterials for TAM targeting due to their intrinsic affinities towards macrophages. Various dextran-based nanomaterials have been developed to image TAMs.
View Article and Find Full Text PDFHyaluronan (HA) has been widely used to construct nanocarriers for cancer-targeted drug delivery, due to its excellent biocompatibility and intrinsic affinity towards CD44 that is overexpressed in most cancer types. However, the HA-based nanocarriers are prone to trapping in lysosomes following the HA-mediated endocytosis, which limited the delivered drug to access its pharmacological action sites and subsequently compromised the therapeutic efficacy. To overcome this intracellular obstacle, here we demonstrated the co-loading of chloroquine (CQ) in HA nanogel could efficiently promote the intracellular delivery of cisplatin.
View Article and Find Full Text PDFThe development of lithium-ion batteries with simplified assembling steps and fast charge capability is crucial for current battery applications. In this study, we propose a simple in-situ strategy for the construction of high-dispersive cobalt oxide (CoO) nanoneedle arrays, which grow vertically on a copper foam substrate. It is demonstrated that this nanoneedle CoO electrodes provide abundant electrochemical surface area.
View Article and Find Full Text PDF