Publications by authors named "Runjhun Mathur"

Breast cancer is considered a significant health concern worldwide, with genetic predisposition playing a critical role in its etiology. Single nucleotide polymorphisms (SNPs), particularly those within the 3' untranslated regions (3'UTRs) of target genes, are emerging as key factors in breast cancer susceptibility. Specifically, miRNAs have been recognized as possible novel approach for biomarkers discovery for both prognosis and diagnosis due to their direct association with cancer progression.

View Article and Find Full Text PDF

Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli.

View Article and Find Full Text PDF

Cervical cancer is one of the leading causes of women's mortality in developing countries. The prevalence of cervical cancer is higher in developing countries like India and continents like Africa. Hyper-methylation of tumor suppressor genes through human papillomavirus (HPV) infection is known to be one of the major causes of cervical cancer.

View Article and Find Full Text PDF

Epigenetic modifications are inherited differences in cellular phenotypes, such as cell gene expression alterations, that occur during somatic cell divisions (also, in rare circumstances, in germ line transmission), but no alterations to the DNA sequence are involved. Histone alterations, polycomb/trithorax associated proteins, short non-coding or short RNAs, long non-coding RNAs (lncRNAs), & DNA methylation are just a few biological processes involved in epigenetic events. These various modifications are intricately linked.

View Article and Find Full Text PDF

Background: LATS1 (Large Tumor Suppressor, isoform 1) is a gene that forms a complex with the cyclin-dependent kinase, CDK1, and regulates cell cycle progression. Genetic modifications lead to a loss in the activity of LATS1 gene. OSCC is the most commonly emerging cancer caused by genetic as well as epigenetic changes.

View Article and Find Full Text PDF

ABSTRACT
Large Tumor Suppressor (LATS2) gene are Tumor Suppressor gene, linked with epigenetic modifications. LATS2 promoter hypermethylation is an important epigenetic silencing mechanism leading to cancer. Cancer is the most common, vicious and dangerously increasing diseases of the world today, associated with high morbidity and mortality.

View Article and Find Full Text PDF