Publications by authors named "Runger G"

Objectives: To assess the congruence between patient assignment and established patients as well as their association with Healthcare Effectiveness Data and Information Set (HEDIS) quality performance.

Study Design: A retrospective cross-sectional analysis from January 2020 to February 2022.

Methods: The study setting is a fully integrated health care delivery system in Phoenix, Arizona.

View Article and Find Full Text PDF

COVID-19 burdens are disproportionally high in underserved and vulnerable communities in Arizona. As the pandemic progressed, it is unclear if the initial associated health disparities have changed. This study aims to elicit the dynamic landscape of COVID-19 disparities at the community level and identify newly emerging vulnerable subpopulations.

View Article and Find Full Text PDF

Context: Public health collaboratives are effective platforms to develop interventions for improving population health. Most collaboratives are limited to the public health and health care delivery sectors; however, multisector collaboratives are becoming more recognized as a strategy for combining efforts from medical, public health, social services, and other sectors.

Program: Based on a 4-year multisector collaborative project, we identify concepts for widening the lens to conduct multisector alignment research.

View Article and Find Full Text PDF

Background: In biomarker discovery, applying domain knowledge is an effective approach to eliminating false positive features, prioritizing functionally impactful markers and facilitating the interpretation of predictive signatures. Several computational methods have been developed that formulate the knowledge-based biomarker discovery as a feature selection problem guided by prior information. These methods often require that prior information is encoded as a single score and the algorithms are optimized for biological knowledge of a specific type.

View Article and Find Full Text PDF

Motivation: Matched case-control analysis is widely used in biomedical studies to identify exposure variables associated with health conditions. The matching is used to improve the efficiency. Existing variable selection methods for matched case-control studies are challenged in high-dimensional settings where interactions among variables are also important.

View Article and Find Full Text PDF

Background: Copy Number Alternations (CNAs) is defined as somatic gain or loss of DNA regions. The profiles of CNAs may provide a fingerprint specific to a tumor type or tumor grade. Low-coverage sequencing for reporting CNAs has recently gained interest since successfully translated into clinical applications.

View Article and Find Full Text PDF

In this paper, we propose a new end-to-end deep neural network model for time-series classification (TSC) with emphasis on both the accuracy and the interpretation. The proposed model contains a convolutional network component to extract high-level features and a recurrent network component to enhance the modeling of the temporal characteristics of TS data. In addition, a feedforward fully connected network with the sparse group lasso (SGL) regularization is used to generate the final classification.

View Article and Find Full Text PDF

Background: Next generation sequencing tests (NGS) are usually performed on relatively small core biopsy or fine needle aspiration (FNA) samples. Data is limited on what amount of tumor by volume or minimum number of FNA passes are needed to yield sufficient material for running NGS. We sought to identify the amount of tumor for running the PCDx NGS platform.

View Article and Find Full Text PDF

While long-term survival rates for early-stage lung cancer are high, most cases are diagnosed in later stages that can negatively impact survival rates. We aim to design a simple, single biomarker blood test for early-stage lung cancer that is robust to preclinical variables and can be readily implemented in the clinic. Whole blood was collected in PAXgene tubes from a training set of 29 patients, and a validation set of 260 patients, of which samples from 58 patients were prospectively collected in a clinical trial specifically for our study.

View Article and Find Full Text PDF

Introduction: The Learning Health System Network clinical data research network includes academic medical centers, health-care systems, public health departments, and health plans, and is designed to facilitate outcomes research, pragmatic trials, comparative effectiveness research, and evaluation of population health interventions.

Methods: The Learning Health System Network is 1 of 13 clinical data research networks assembled to create, in partnership with 20 patient-powered research networks, a National Patient-Centered Clinical Research Network.

Results And Conclusions: Herein, we describe the Learning Health System Network as an emerging resource for translational research, providing details on the governance and organizational structure of the network, the key milestones of the current funding period, and challenges and opportunities for collaborative science leveraging the network.

View Article and Find Full Text PDF

Autoassociative neural networks (ANNs) have been proposed as a nonlinear extension of principal component analysis (PCA), which is commonly used to identify linear variation patterns in high-dimensional data. While principal component scores represent uncorrelated features, standard backpropagation methods for training ANNs provide no guarantee of producing distinct features, which is important for interpretability and for discovering the nature of the variation patterns in the data. Here, we present an alternating nonlinear PCA method, which encourages learning of distinct features in ANNs.

View Article and Find Full Text PDF

Purpose: Predictive models allow clinicians to identify higher- and lower-risk patients and make targeted treatment decisions. Microalbuminuria (MA) is a condition whose presence is understood to be an early marker for cardiovascular disease. The aims of this study were to develop a patient data-driven predictive model and a risk-score assessment to improve the identification of MA.

View Article and Find Full Text PDF

Time series classification is an important task with many challenging applications. A nearest neighbor (NN) classifier with dynamic time warping (DTW) distance is a strong solution in this context. On the other hand, feature-based approaches have been proposed as both classifiers and to provide insight into the series, but these approaches have problems handling translations and dilations in local patterns.

View Article and Find Full Text PDF

Kernel principal component analysis (KPCA) is a method widely used for denoising multivariate data. Using geometric arguments, we investigate why a projection operation inherent to all existing KPCA denoising algorithms can sometimes cause very poor denoising. Based on this, we propose a modification to the projection operation that remedies this problem and can be incorporated into any of the existing KPCA algorithms.

View Article and Find Full Text PDF

Phenotypic characterization of individual cells provides crucial insights into intercellular heterogeneity and enables access to information that is unavailable from ensemble averaged, bulk cell analyses. Single-cell studies have attracted significant interest in recent years and spurred the development of a variety of commercially available and research-grade technologies. To quantify cell-to-cell variability of cell populations, we have developed an experimental platform for real-time measurements of oxygen consumption (OC) kinetics at the single-cell level.

View Article and Find Full Text PDF

Despite significant improvements in recent years, proteomic datasets currently available still suffer from large number of missing values. Integrative analyses based upon incomplete proteomic and transcriptomic datasets could seriously bias the biological interpretation. In this study, we applied a non-linear data-driven stochastic gradient boosted trees (GBT) model to impute missing proteomic values using a temporal transcriptomic and proteomic dataset of Shewanella oneidensis.

View Article and Find Full Text PDF

Motivation: Gene expression profiling technologies can generally produce mRNA abundance data for all genes in a genome. A dearth of proteomic data persists because identification range and sensitivity of proteomic measurements lag behind those of transcriptomic measurements. Using partial proteomic data, it is likely that integrative transcriptomic and proteomic analysis may introduce significant bias.

View Article and Find Full Text PDF

This paper proposes a new feature selection methodology. The methodology is based on the stepwise variable selection procedure, but, instead of using the traditional discriminant metrics such as Wilks' Lambda, it uses an estimation of the misclassification error as the figure of merit to evaluate the introduction of new features. The expected misclassification error rate (MER) is obtained by using the densities of a constructed function of random variables, which is the stochastic representation of the conditional distribution of the quadratic discriminant function estimate.

View Article and Find Full Text PDF