Publications by authors named "Rundberget T"

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous contaminants which are also found in drinking water. Concentration levels in drinking water vary widely and range from a very low contribution to total daily exposure for humans to being the major source of uptake of PFAS. PFAS concentrations in Norwegian drinking water has been rarely reported.

View Article and Find Full Text PDF
Article Synopsis
  • A study examines how to identify bioactive per- and polyfluoroalkyl substances (PFAS) in environmental samples, as only a few of these compounds are regularly monitored.
  • It combines toxicity testing, targeted chemical analyses, and suspect screening to find unknown substances in PFAS-contaminated sediments, particularly looking at their interaction with the thyroid hormone distributor protein, transthyretin (TTR).
  • The researchers determined that certain PFAS, like PFHpS and PFOS, have varying potencies for TTR binding, but not all observed bioactivity in sediment samples was linked to the known PFAS, leading to the identification of five additional candidates through suspect screening.
View Article and Find Full Text PDF

Two high-mass polar compounds were observed in aqueous side-fractions from the purification of okadaic acid () and dinophysistoxin-2 () from blooms in Spain and Norway. These were isolated and shown to be 24--β-d-glucosides of and ( and , respectively) by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and enzymatic hydrolysis. These, together with standards of , , dinophysistoxin-1 (), and a synthetic specimen of 7-deoxy- (), combined with an understanding of their mass spectrometric fragmentation patterns, were then used to identify -, the 24--β-d-glucoside of dinophysistoxin-1 (), , 7-deoxy- (), and 7-deoxy- () in a range of extracts from blooms, cultures, and contaminated shellfish from Spain, Norway, Ireland, Canada, and New Zealand.

View Article and Find Full Text PDF

The entirety of the sediment bed in lake Tyrifjorden, Norway, is contaminated by per- and polyfluoroalkyl substances (PFAS). A factory producing paper products and a fire station were investigated as possible sources. Fire station emissions were dominated by the eight carbon perfluoroalkyl sulfonic acid (PFSA), perfluorooctanesulfonic acid (PFOS), from aqueous film forming foams.

View Article and Find Full Text PDF

The environmental behavior of perfluorinated alkyl acids (PFAA) and their precursors was investigated in lake Tyrifjorden, downstream a factory producing paper products coated with per- and polyfluorinated alkyl substances (PFAS). Low water concentrations (max 0.18 ng L linear perfluorooctanesulfonic acid, L-PFOS) compared to biota (mean 149 μg kg L-PFOS in perch livers) resulted in high bioaccumulation factors (L-PFOS BAF: 8.

View Article and Find Full Text PDF

Azaspiracids belong to a family of more than 50 polyether toxins originating from marine dinoflagellates such as Azadinium spinosum. All of the azaspiracids reported thus far contain a 21,22-dihydroxy group. Boric acid gel can bind selectively to compounds containing vic-diols or α-hydroxycarboxylic acids via formation of reversible boronate complexes.

View Article and Find Full Text PDF

Following a review of official control data on shellfish in France, Ingril Lagoon had been identified as a site where positive mouse bioassays for lipophilic toxins had been repeatedly observed. These unexplained mouse bioassays, also called atypical toxicity, coincided with an absence of regulated toxins and rapid death times in mice observed in the assay. The present study describes pinnatoxin G as the main compound responsible for the toxicity observed using the mouse bioassay for lipophilic toxins.

View Article and Find Full Text PDF

Microcystins are cyclic heptapeptides from cyanobacteria which are responsible for poisonings of livestock and humans. Cyanobacteria also produce a range of peptides and other compounds that can result in complex chromatograms when samples are analysed by LC-MS. Thiol derivatization of the α,β-unsaturated amide present in most microcystins was recently shown to simplify analysis of LC-MS chromatograms of a Microcystis culture, making it easier to identify peaks corresponding to microcystins in complex mixtures.

View Article and Find Full Text PDF

Several cases of neurological disease in dogs after poisoning by food- and feed-borne Penicillium toxins in Norway during the last years have uncovered a lack of knowledge regarding the toxicity and mechanism of action of neuroactive mycotoxins. In the present study, the lowest tremor-inducing dose after single oral administration of penitrem A to mice was 0.50 mg/kg bw.

View Article and Find Full Text PDF

Microcystins are a group of cyclic heptapeptides originating from cyanobacteria. Cyanobacteria also produce a range of peptides and other compounds that can result in complex chromatograms when samples are analyzed by LC-MS. Derivatization with appropriate thiols (e.

View Article and Find Full Text PDF

The effects of the fungal neurotoxin penitrem A on the GABAergic and glutamatergic systems in rat brain were evaluated. Penitrem A inhibited binding of the GABA(A)-receptor ligand [³H]TBOB to rat forebrain and cerebellar membrane preparations with IC₅₀ (half maximal inhibitory concentration) values of 11 and 9 μM, respectively. Furthermore, penitrem A caused a concentration-dependent increase of [³H]flunitrazepam and [³H]muscimol binding in rat forebrain, but not in cerebellar preparations.

View Article and Find Full Text PDF

Fast-acting cyclic imines belonging to the pinnatoxin and pteriatoxin group of toxins were originally identified in shellfish of the genera Pinna and Pteria in Japan, after food poisoning events in China linked to consumption of Pinna spp. Recently, a range of new and known pinnatoxin analogs has been identified in shellfish, sediment, and seawater samples from Australia and New Zealand. Although the structurally closely-related spirolide toxins are better known, and have a worldwide distribution including Norway and other parts of Europe, the presence of pinnatoxins has not been reported in European waters or shellfish.

View Article and Find Full Text PDF

The development of multi-analyte methods for lipophilic shellfish toxins based on liquid chromatography-mass spectrometry permits rapid screening and analysis of samples for a wide variety of toxins in a single run. Validated methods and appropriate certified reference materials (CRMs) are required to ensure accuracy of results. CRMs are essential for accurate instrument calibration, for assessing the complete analytical method from sample extraction to data analysis and for verifying trueness.

View Article and Find Full Text PDF

Chemical investigation of three isolates of Penicillium crustosum Thom cultures, one of which was derived from a recent dog poisoning investigation, has led to the isolation and structure elucidation of secopenitrem D (1). Penitrems A-F and roquefortine C were also present in the isolates analyzed. The structure of 1 was unambiguously assigned based on extensive 1D and 2D-NMR spectroscopic experiments, MS-aided structural studies and by comparison with structurally related congeners.

View Article and Find Full Text PDF

This paper reports the mass spectra, obtained after electron ionisation (EI) at 70 eV, of 34 trichothecenes and five culmorin compounds after acylation with pentafluoropropionic anhydride. The derivatised fungal metabolites were separated by gas chromatography, and the mass spectra were obtained by scanning of a single quadrupole mass filter in the scan range m/z 200-900. The fragmentation pathways of three trichothecenes (triacetyl-deoxynivalenol, 4,15-diacetoxy-scirpenol, T-2 toxin) have been studied in more detail by linked scan-high-resolution mass spectrometry.

View Article and Find Full Text PDF

A range of damaged nucleosides, also found in digested dietary DNA, appear to be taken up by cells and incorporated into the cells' own DNA. Most incorporated damaged nucleosides will be repaired by cellular DNA repair systems. However, a small fraction of these will escape repair and thus ultimately create mutations.

View Article and Find Full Text PDF

Okadaic acid (OA), dinophysistoxin-1 (DTX-1), and dinophysistoxin-2 (DTX-2) are algal toxins that can accumulate in shellfish and cause diarrhetic shellfish poisoning. Recent studies indicate that DTX-2 is about half as toxic and has about half the affinity for protein phosphatase 2A (PP2A) as OA. NMR structural studies showed that DTX-1 possessed an equatorial 35-methyl group but that DTX-2 had an axial 35-methyl group.

View Article and Find Full Text PDF

Fungi in the genus Penicillium, particularly P. crustosum, produce tremorgenic mycotoxins, as well as suspected tremorgenic compounds. The accidental intoxication of six dogs with such toxins are reported.

View Article and Find Full Text PDF

Passive sampling disks were developed based on the method of MacKenzie, L, Beuzenberg, V., Holland, P., McNabb, P.

View Article and Find Full Text PDF

Penitrem A is a potent neurotoxin produced by several species in the genus Penicillium, which primarily affects the central nervous system. The toxin has several effects on neurotransmitter release, both at the central and peripheral level, as well as on ion channels. We have evaluated the hepatic metabolism of penitrem A by rat hepatocytes and rat-liver microsomes in vitro.

View Article and Find Full Text PDF

A new, fast and efficient multiple reaction monitoring (MRM) high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the determination of cyclopiazonic acid (CPA) in mixed feed, wheat, peanuts and rice is presented. The analytical methodology involves sample extraction with an alkaline methanol-water mixture, defatting with hexane and quantification using HPLC-MS/MS without further treatment of sample extracts. Reversed-phase liquid chromatography using a C18 stationary phase coupled to negative mode electrospray triple quadrupole tandem mass spectrometry was applied.

View Article and Find Full Text PDF

Vitellogenin (Vtg) induction in African sharptooth catfish (Clarias gariepinus) was assessed in order to develop a method for monitoring estrogenic pollution in African freshwater systems. Clarias gariepinus Vtg (Cg-Vtg) was purified from serum obtained from 17alpha-ethynylestradiol (EE2)-exposed fish and polyclonal antibodies against Cg-Vtg were raised. An enzyme-linked immunosorbent assay (ELISA) was developed and the induction and kinetics of Vtg were assessed in male fish in three different exposure trials using both natural estrogen (17alpha-estradiol [E2]) and synthetic EE2.

View Article and Find Full Text PDF

Marine algal toxins of the okadaic acid (OA) group can occur as diol esters and sulfated diol esters in algae and as fatty acid esters in shellfish. Several of these ester forms have been identified, but the most common procedure for detecting OA group toxin esters is by measuring the increase in parent toxin after alkaline hydrolysis. Use of this alkaline hydrolysis method led to the discovery of high levels of conjugates of OA and dinophysistoxins-2 (DTX2) in seawater and of OA, DTX1, and DTX2 in blue mussel hepatopancreas (HP) from Flødevigen, Norway, during a bloom of Dinophysis spp.

View Article and Find Full Text PDF

Marine algal toxins of the okadaic acid group can occur as fatty acid esters in blue mussels, and are commonly determined indirectly by transformation to their parent toxins by alkaline hydrolysis. Some data are available regarding the identity of the fatty acid esters, mainly of palmitic acid (16:0) derivatives of okadaic acid (OA), dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2). Other fatty acid derivatives have been described, but with limited mass spectral data.

View Article and Find Full Text PDF

In 2005 and 2006, azaspiracids were for the first time detected in brown crabs (Cancer pagurus) from the west coast of Sweden and the north and north-west coast of Norway. Azaspiracids are marine toxins that have been detected in blue mussels in Europe in recent years. On some occasions, they have been responsible for human intoxications with symptoms similar to those occurring by consumption of shellfish contaminated with okadaic acid group toxins.

View Article and Find Full Text PDF