Activated carbon (BC) prepared from olive oil solid waste (olive husk) by slow pyrolysis was chemically activated using MgCl (BC-MgCl). The BC and BC-MgCl were used as adsorbents for removal of three phenolic compounds, namely, phenol (P), p-methoxyphenol (PMP) and p-nitrophenol (PNP), from aqueous solution. The uptake of these three phenolic compounds by the BC and BC-MgCl was better expressed by the Langmuir and Dubinin-Radushkevich (D-R) isotherm models than by the Freundlich isotherm, and the kinetics of the adsorption process followed the pseudo-second order kinetic model.
View Article and Find Full Text PDFBiochar samples were prepared from pine fruit shell (PFS) biomass using slow pyrolysis for 1 h at three different temperatures (350, 450 and 550°C). Batch experiments were carried out for the biosorption of phenol onto these biochars. The effect of biosorption experimental parameters such as adsorbent dosage, ionic strength, initial solution pH, contact time and temperatures has been investigated.
View Article and Find Full Text PDFSolid waste from Jordanian olive oil processing (OOSW) was used to prepare biochar samples by slow pyrolysis at terminal temperatures of 350, 450, 550 and 630 °C; henceforth known as BC-350, BC-450, BC-550 and BC-630, respectively. These samples were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction, ash content, moisture content and surface area. The ability of the biochar to remove Hg ions from aqueous solutions was investigated in laboratory scale batch experiments.
View Article and Find Full Text PDF