Publications by authors named "Runchuan Li"

Reliable biomarkers are in need to predict the prognosis of hepatocellular carcinoma (HCC). Whilst recent evidence has established the critical role of copper homeostasis in tumor growth and progression, no previous studies have dealt with the copper-related genes (CRGs) signature with prognostic potential in HCC. To develop and validate a CRGs prognostic signature for HCC, we retrospectively included 353 and 142 patients as the development and validation cohort, respectively.

View Article and Find Full Text PDF

Arrhythmia is a cardiovascular disease that seriously affects human health. The identification and diagnosis of arrhythmia is an effective means of preventing most heart diseases. In this paper, a BiLSTM-Treg algorithm that integrates rhythm information is proposed to realize the automatic classification of arrhythmia.

View Article and Find Full Text PDF

Myocardial infarction (MI) is one of the most common cardiovascular diseases threatening human life. In order to accurately distinguish myocardial infarction and have a good interpretability, the classification method that combines rule features and ventricular activity features is proposed in this paper. Specifically, according to the clinical diagnosis rule and the pathological changes of myocardial infarction on the electrocardiogram, the local information extracted from the Q wave, ST segment, and T wave is computed as the rule feature.

View Article and Find Full Text PDF

Arrhythmia is a common cardiovascular disease that can threaten human life. In order to assist doctors in accurately diagnosing arrhythmia, an intelligent heartbeat classification system based on the selected optimal feature sets and AdaBoost + Random Forest model is developed. This system can acquire ECG signals through the Holter and transmit them to the cloud platform for preprocessing and feature extraction, and the features are input into AdaBoost + Random Forest for heartbeat classification.

View Article and Find Full Text PDF

Automatic classification of ECG is very important for early prevention and auxiliary diagnosis of cardiovascular disease patients. In recent years, many studies based on ECG have achieved good results, most of which are based on single-label problems; one record corresponds to one label. However, in actual clinical applications, an ECG record may contain multiple diseases at the same time.

View Article and Find Full Text PDF

Arrhythmia is one of the most common abnormal symptoms that can threaten human life. In order to distinguish arrhythmia more accurately, the classification strategy of the multifeature combination and Stacking-DWKNN algorithm is proposed in this paper. The method consists of four modules.

View Article and Find Full Text PDF

Premature ventricular contraction (PVC) is one of the most common arrhythmias in the clinic. Due to its variability and susceptibility, patients may be at risk at any time. The rapid and accurate classification of PVC is of great significance for the treatment of diseases.

View Article and Find Full Text PDF