Publications by authors named "Runbin Yan"

Background: The CAR T-cell therapy is a promising approach to treating hematologic malignancies. However, the application in solid tumors still has many tough challenges, including heterogenicity in antigen expressions and immunosuppressive tumor microenvironment (TME). As a new cancer treatment modality, oncolytic virotherapy can be engineered to circumvent these obstacles for CAR T cell therapy in solid tumors.

View Article and Find Full Text PDF

The mechanical properties of tumor cells adhering to extracellular matrix (ECM) are closely related with their invasion and metastesis. In this study we investigated the adhesive mechanical properties between hepatocellular carcinoma cells(HCC) and the collagen I coated surfaces from the viewpoint of cell cycle by coupling cellular biology and cellular mechanics, using micropipette aspiration and cell synchronization technique. The results showed that the synchronous G1 and S phase HCC cells were achieved by use of thymine-2-desoryriboside, colchicines sequential blockage method and double thymine-2-desoryriboside blockage method, and that the synchronous rates of G1 and S phase HCC amounted to 74.

View Article and Find Full Text PDF

Aim: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721) to human umbilical vein endothelial cells (ECV-304), expression of adhesive molecule integrinbeta1 in SMMC-7721 cells and its contribution to this adhesive course.

Methods: Adhesive force of SMMC-7721 cells to endothelial cells was measured using micropipette aspiration technique. Synchronous G1 and S phase SMMC-7721 cells were achieved by thymine-2-deoxyriboside and colchicines sequential blockage method and double thymine-2-deoxyriboside blockage method, respectively.

View Article and Find Full Text PDF