The use of ionic liquid (IL) in biomass pretreatment has received considerable attention recently because of its effectiveness in decreasing biomass recalcitrance to subsequent enzymatic hydrolysis. To understand the structural changes of lignin after pretreatment and enzymatic hydrolysis process, ionic liquid lignin (ILL) and subsequent residual lignin (RL) were sequentially isolated from ball-milled birch wood. The quantitative structural features of ILL and RL were compared with the corresponding cellulolytic enzyme lignin (CEL) by nondestructive techniques (e.
View Article and Find Full Text PDFSelf-associating cellulose-graft-poly(ɛ-caprolactone) (cellulose-g-PCL) copolymers were successfully synthesized via homogeneous ring-opening polymerization (ROP) of ɛ-CL onto softwood dissolved pulp substrate in ionic liquid 1-N-butyl-3-methylimidazolium chloride ([Bmim]Cl). An organic catalyst N,N-dimethylamino-4-pyridine (DMAP) was compared with the traditional metal-based catalyst (Sn(Oct)(2)) as the catalyst of the reaction, and exhibited higher catalytic activity. By controlling the cellulose:ɛ-CL feed ratio and reaction temperature, the molecular architecture of the copolymers can be altered, as evidenced by FT-IR, (1)H NMR, (13)C NMR, TGA and XRD.
View Article and Find Full Text PDFTo investigate the potential for the utilization of cotton stalk, ammonia hydrothermal treatment was applied to fractionate the samples into aqueous ammonia-soluble and ammonia-insoluble portions. The ammonia-soluble portion was purified to yield lignin fractions. The lignin fractions obtained were characterized by wet chemistry (carbohydrate analysis) and spectroscopy methods (FT-IR, 13C and 1H-13C HSQC NMR spectroscopy) as well as gel permeation chromatography (GPC).
View Article and Find Full Text PDFBioresour Technol
January 2013
Hydrothermal liquefaction of cornstalk at 180-300 °C at ratios of water to cornstalk of 6-14 was conducted, and the reaction products were lumped into gas, water-soluble organics (ethanol-insoluble and ethanol-soluble organics), heavy oil, volatile organic compounds, and acid-soluble and acid-insoluble solid residues. Low temperature, high ratio of water to cornstalk, and short reaction time favored the formation of bio-oil (ethanol-insoluble organics, ethanol-soluble organics, and heavy oil) but inhibited the formation of acid-insoluble solid residue. Increasing temperature and reaction time increased the yields of gas and volatile organic compounds, whereas decreased the yield of acid-soluble solid residue.
View Article and Find Full Text PDFIn this study, an attempt was made to prepare novel D-glucosamine hydrochloride-rectorite (DGH-REC) nanocomposites with improved antioxidant and anti-ultraviolet activity via the solution-intercalation method. The structure and morphology of DGH-REC nanocomposites were characterized by XRD, TEM, (13)C CP/MAS NMR, FT-IR, XPS and SEM. The results showed that the interlayer distance of REC was enlarged after intercalation of DGH; the largest value reached 11.
View Article and Find Full Text PDFXylooligosaccharides (XOS) were prepared from xylan-rich hemicelluloses isolated by potassium hydroxide from sugarcane bagasse by hydrolysis with crude xylanase secreted by Pichia stipitis. Hydrolysis for 12h produced XOS with a maximum yield of 31.8%, equivalent to 5.
View Article and Find Full Text PDFThe present work investigated the effects of hydrothermal treatment (HTT) of Tamarix ramosissima by determination of sugar and inhibitor formation in the liquid fraction, and chemical and morphological changes of the pretreated solid material coupled with an evaluation of enzymatic hydrolysis. HTT was carried out in a batch reactor system at a maximal temperature (TMAX 180-240 °C) and evaluated for severities logRo ranging from 2.40 to 4.
View Article and Find Full Text PDFPinoresinol structures, featuring a β-β'-linkage between lignin monomer units, are important in softwood lignins and in dicots and monocots, particularly those that are downregulated in syringyl-specific genes. Although readily detected by NMR spectroscopy, pinoresinol structures largely escaped detection by β-ether-cleaving degradation analyses presumably due to the presence of the linkages at the 5 positions, in 5-5'- or 5-O-4'-structures. In this study, which is aimed at helping better understand 5-linked pinoresinol structures by providing the required data for NMR characterization, new lignin model compounds were synthesized through biomimetic peroxidase-mediated oxidative coupling reactions between pre-formed (free-phenolic) coniferyl alcohol 5-5'- or 5-O-4'-linked dimers and a coniferyl alcohol monomer.
View Article and Find Full Text PDFJ Agric Food Chem
November 2012
Pretreatment is the key to unlock the recalcitrance of lignocellulosic biomass for the productions of biofuels. Ionic liquid pretreatment has drawn increased attention because of its numerous advantages over conventional methods. In this study, corncob was submitted to pretreatments with 1-ethyl-3-methylimadazolium acetate (EMIMAc) and/or H(2)O/dimethyl sulfoxide (DMSO) followed by alkaline extraction to isolate hemicelluloses.
View Article and Find Full Text PDFThe purpose of this study is to develop a green strategy to synthesize the cellulose-based nanocomposites and open a new avenue to the high value-added applications of biomass. Herein, we reported a microwave-assisted ionic liquid route to the preparation of cellulose/CuO nanocomposites, which combined three major green chemistry principles: using environmentally friendly method, greener solvents, and sustainable resources. The influences of the reaction parameters including the heating time and the ratio of cellulose solution to ionic liquid on the products were discussed by X-ray powder diffraction, Fourier transform infrared spectrometry, and scanning electron microscopy.
View Article and Find Full Text PDFAlthough the effects of cellulose crystallinity and lignin content as two major structural features on enzymatic hydrolysis have been extensively studied, debates regarding their effects still exist. In this study, reconstitution of cellulose and lignin after 1-ethyl-3-methylimidazolium acetate ([C(2)mim][OAc]) pretreatment was proposed as a new method to study their effects on enzymatic digestibility. Different mechanisms of lignin content for reduction of cellulose hydrolysis were found between the proposed method and the traditional method (mixing of cellulose and lignin).
View Article and Find Full Text PDFMicrowave-assisted extraction in organic acid aqueous solution (formic acid/acetic acid/water, 3/5/2, v/v/v) was applied to isolate lignin from bamboo. Additionally, the structural features of the extracted lignins were thoroughly investigated in terms of C₉ formula, molecular weight distribution, FT-IR, (1)H NMR and HSQC spectroscopy. It was found that with an increase in the severity of microwave-assisted extraction, there was an increase of phenolic hydroxyl content in the lignin.
View Article and Find Full Text PDFExfoliated quaternized carboxymethyl chitosan/rectorite (QCMC/REC) nanocomposite was prepared via microwave irradiation method for 70 min, which was performed in only water without any additional plasticizer. XRD, TEM, AFM, SEM and FTIR results revealed that when the mass ratio of QCMC to REC was no less than 4:1, the silicate layers of REC were completely exfoliated in QCMC matrix and were homogenous with QCMC, the surface of QCMC/REC nanobiocomposite was very smooth; two types of interactions of hydrogen bond and electrostatic attraction existed in the QCMC/REC nanobiocomposite. Thermal analysis indicated that QCMC/REC nanobiocomposite had higher thermal stability than only QCMC.
View Article and Find Full Text PDFCarbohydr Polym
September 2012
Colloidal stability of negatively charged cellulose nanocrystalline (CNC) in the presence of inorganic and organic electrolytes was investigated by means of dynamic light scattering and atomic force microscopy. CNC could be well dispersed in distilled water due to the electrostatic repulsion among negatively charged sulfate ester groups. Increasing the concentration of inorganic cation ions (Na(+) and Ca(2+)) resulted in CNC aggregation.
View Article and Find Full Text PDFThe purposes of this study were to explore the influences of different cellulose types on the cellulose/CaCO3 composites, which were synthesized via the microwave-assisted method by using alkali extraction cellulose and microcrystalline cellulose, respectively. Experimental results demonstrated that the types of cellulose played an important role in the microstructure and morphologies of the cellulose/CaCO3 composites. The composites consisted of cellulose and pure phase CaCO3 (calcite).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2012
Nanocomposites of cellulose/iron oxide have been successfully prepared by hydrothermal method using cellulose solution and Fe(NO3)3·9H2O at 180 °C. The cellulose solution was obtained by the dissolution of microcrystalline cellulose in NaOH/urea aqueous solution, which is a good system to dissolve cellulose and favors the synthesis of iron oxide without needing any template or other reagents. The phases, microstructure, and morphologies of nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectra (EDS).
View Article and Find Full Text PDFHydrothermal carbonization (HTC) is a novel thermochemical conversion process to convert lignocellulosic biomass into value-added products. HTC processes were studied using two different biomass feedstocks: corn stalk and Tamarix ramosissima. The treatment brought an increase of the higher heating values up to 29.
View Article and Find Full Text PDFNovel hydrophobic hemicelluloses possessing hydrophobic groups were prepared by the benzylation of wheat straw hemicelluloses with benzyl chloride under the presence of catalyst in an ethanol/water system. In particular, the progress of the benzylation reaction was studied as a function of the volume ratio of ethanol/water from 4:1 to 6:4, the molar ratio of NaOH/anhydroxylose unit in hemicelluloses from 0.6:1 to 1.
View Article and Find Full Text PDFIn order to understand the behaviors of hemicelluloses and lignin under the given acidic conditions with increasing severity, the structural characteristics were elucidated in detail by both wet chemistry methods and spectroscopic analyses in this study. Although acidic pretreatment significantly hydrolyzed the glycosidic linkages in xylan backbone and then reduced the molecular weight of xylan from 89,600 to 19,630 g/mol, a slightly increased amount of glucuronic acid was observed, probably attributing to the maintenance of ester bonds. The serious structural variation occurred in lignin macromolecule was evidenced by the extensive degradation of β-O-4 ether linkages and resinol substructure, together with the changes in the ratios of the three monolignols in ester-bond, ether-bond and non-condensed phenolic compounds.
View Article and Find Full Text PDFA novel porous bioadsorbent for metal ion binding (Pd(2+) and Cd(2+)) was successfully prepared from lignocellulosic biomass in ionic liquid by homogeneous succinoylation and sequent chemical cross-linking. The morphology of the bioadsorbent and the interaction between bioadsorbent and metal ions was revealed by scanning electron microscopy and Fourier transform infrared spectroscopy. Results showed that the adsorption mechanism of the bioadsorbent was an ion exchange.
View Article and Find Full Text PDFThe dewaxed sample from Triploid of Populus tomentosa Carr. was extracted by using organic alkaline solvent (Dimethylformamide, DMF) via hydrothermal pretreatment. Neutral sugar compositions and molecular weight analysis demonstrated that the hemicellulosic fractions with a higher Uro/Xyl ratio, namely the more branched hemicelluloses, had higher molecular weights.
View Article and Find Full Text PDFDelignified Arundo donax was sequentially extracted with DMSO, saturated barium hydroxide, and 1.0 M aqueous NaOH solution. The yields of the soluble fractions were 10.
View Article and Find Full Text PDFXylan-rich hemicelluloses-based hydrogel was developed as a novel porous bioadsorbent by graft co-polymerization of acrylic acid (AA) and xylan-rich hemicelluloses for adsorption of heavy metal ions (Pd(2+), Cd(2+), and Zn(2+)) from aqueous solutions. The chemical structure, the interaction between the hydrogel and metal ions, and the porous structure of xylan-rich hemicelluloses-g-AA hydrogel were revealed by Fourier transform infrared spectroscopy and scanning electron microscopy. The effects of AA and cross-linker dosage, pH value, contacting time, and initial concentration of metal ion on the adsorption capacity were studied.
View Article and Find Full Text PDFA series of amiphiphilic cellulose-based graft copolymers (MCC-g-PLA) with various molecular factors were synthesized in ionic liquid BmimCl and characterized by FT-IR, (1)H NMR, (13)C NMR, XRD, and TGA. Their solubility in a variety of solvents was compared. The prepared MCC-g-PLA copolymers can self-assemble into spherical nanomicelles (10-50 nm) in aqueous solution.
View Article and Find Full Text PDF