Mitochondria are essential for cell metabolism and survival as they produce the majority of cellular ATP through oxidative phosphorylation as well as regulate critical processes such as cell proliferation and apoptosis. NIPSNAP family of proteins are predominantly mitochondrial matrix proteins. However, the molecular and cellular functions of the NIPSNAPs, particularly NIPSNAP3A, have remained elusive.
View Article and Find Full Text PDFZhongguo Yi Xue Ke Xue Yuan Xue Bao
October 2024
Zhongguo Yi Xue Ke Xue Yuan Xue Bao
August 2024
Objective To understand the current situation and influencing factors of kindergarten teachers' participation in training for preschool sex education in Luzhou city,and provide a basis for improving the sex education literacy of kindergarten teachers in the future. Methods A multi-stage stratified cluster sampling method was adopted,and a questionnaire survey was conducted from December 2021 to January 2022 on the knowledge,attitude,and practice of preschool sex education among all the teachers in 24 kindergartens in Luzhou city. Results Among the 461 teachers,43.
View Article and Find Full Text PDFSpinal cord injury (SCI) often leads to physical limitations, persistent pain, and major lifestyle shifts, enhancing the likelihood of prolonged psychological stress and associated disorders such as anxiety and depression. The mechanisms linking stress with regeneration remain elusive, despite understanding the detrimental impact of chronic stress on SCI recovery. In this study, we investigated the effect of chronic stress on primary sensory axon regeneration using a preconditioning lesions mouse model.
View Article and Find Full Text PDFLupus nephritis (LN) is a major cause death in patients with systemic lupus erythematosus. We aimed to find the differentially expressed genes (DEGs) in LN and confirm the regulatory mechanism on LN. The mouse model of LN was constructed by subcutaneous injection of pristane.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies are shown to be effective therapeutics for providing coronavirus disease 2019 (COVID-19) protection. However, recurrent variants arise and facilitate significant escape from current antibody therapeutics. Bispecific antibodies (bsAbs) represent a unique platform to increase antibody breadth and to reduce neutralization escape.
View Article and Find Full Text PDFα-Synuclein is a key protein in the pathogenesis of Parkinson's disease as it accumulates in fibrillar form in affected brain regions. Misfolded α-synuclein seeds recruit monomeric α-synuclein to form aggregates, which can spread to anatomically connected brain regions, a phenomenon that correlates with clinical disease progression. Thus, downregulating α-synuclein levels could reduce seeding and inhibit aggregate formation and propagation.
View Article and Find Full Text PDFIn this paper, we present the results of applying an electric field to activate bubbles' escape, coalescence, and departure. A simple electrowetting-on-dielectric device was utilized in this bubble dynamics study. When a copper electrode wire inserted into deionized water was positioned on one side of single or multiple bubbles, the bubble tended to continuously escape from its initial position as the voltage was turned on.
View Article and Find Full Text PDFStructural principles underlying the composition and synergistic mechanisms of protective monoclonal antibody cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic antibody cocktail against SARS-CoV-2. On the basis of our previously identified humanized cross-neutralizing antibody H014, we systematically analyzed a fully human naive antibody library and rationally identified a potent neutralizing antibody partner, P17, which confers effective protection in animal model.
View Article and Find Full Text PDFThis article explores the pathogenesis of sepsis AKI, and seeks to protect the acute damage of sepsis tissues and organs. This study is to prepare a rat sepsis-induced AKI model by CLP, and to observe the pathological changes of kidney tissue and the function of kidney changes, and observe the effect of siRNA nanoparticles on its intervention, preliminary explore the protective effect and possible mechanism of siRNA nanoparticles on AKI in sepsis rats, and provide more information for the clinical treatment of siRNA nanoparticles in sepsis theoretical and experimental basis. We analysis the benefit and deficiency of nuclear factor-B (NF-B) activation in the pathogenesis of glomerulonephritis and its regulatory effect on NF-B activation.
View Article and Find Full Text PDFα-Synuclein (α-Syn) is a key pathogenic protein in α-synucleinopathies including Parkinson disease (PD) and Dementia with Lewy Bodies. The aggregation of α-Syn is believed to be deleterious and a critical step leading to neuronal dysfunction and death. One of the factors that may contribute to the initial steps of this aggregation is crosslinking through transglutaminase 2 (TG2).
View Article and Find Full Text PDFAlpha-synuclein (αS) fibrils are toxic to cells and contribute to the pathogenesis and progression of Parkinson's disease and other synucleinopathies. β-Synuclein (βS), which co-localizes with αS, has been shown to provide a neuroprotective effect, but the molecular mechanism by which this occurs remains elusive. Here we show that αS fibrils formed in the presence of βS are less cytotoxic, exhibit reduced cell seeding capacity and are more resistant to fibril shedding compared to αS fibrils alone.
View Article and Find Full Text PDFα-Synuclein (α-Syn) is a key pathogenic protein in α-synucleinopathies including Parkinson disease and dementia with Lewy bodies. Accumulating evidence has shown that misfolded fibrillar α-Syn is transmitted from cell-to-cell, a phenomenon that correlates with clinical progression of the disease. We previously showed that deleting the MAP3 kinase apoptosis signal-regulating kinase 1 (ASK1), which is a central player linking oxidative stress with neuroinflammation, mitigates the phenotype of α-Syn transgenic mice.
View Article and Find Full Text PDFHyperphosphorylated α-synuclein in Lewy bodies and Lewy neurites is a characteristic neuropathological feature of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). The catalytic subunit of the specific phosphatase, protein phosphatase 2A (PP2A) that dephosphorylates α-synuclein, is hypomethylated in these brains, thereby impeding the assembly of the active trimeric holoenzyme and reducing phosphatase activity. This phosphatase deficiency contributes to the accumulation of hyperphosphorylated α-synuclein, which tends to fibrillize more than unmodified α-synuclein.
View Article and Find Full Text PDFHyperphosphorylated tau aggregates are characteristic of tauopathies including progressive supranuclear palsy (PSP) and Alzheimer disease (AD), but factors contributing to pathologic tau phosphorylation are not well understood. Here, we studied the regulation of the major tau phosphatase, the heterotrimeric AB55αC protein phosphatase 2 A (PP2A), in PSP and AD. The assembly and activity of this PP2A isoform are regulated by reversible carboxyl methylation of its catalytic C subunit, while the B subunit confers substrate specificity.
View Article and Find Full Text PDFAnn Clin Transl Neurol
October 2016
Objective: Protein phosphatase 2A (PP2A) is a heterotrimeric holoenzyme composed of a catalytic C subunit, a structural A subunit, and one of several regulatory B subunits that confer substrate specificity. The assembly and activity of PP2A are regulated by reversible methylation of the C subunit. -Synuclein, which aggregates in Parkinson disease (PD) and dementia with Lewy bodies (DLB), is phosphorylated at Ser, and PP2A containing a B55 subunit is a major phospho-Ser phosphatase.
View Article and Find Full Text PDFInter- and intra- molecular hydrogen bonding plays important role in determining molecular structure, physical and chemical properties, which may be easily ignored for molecules with a non-typical hydrogen bonding structure. We demonstrated in this paper that the hydrogen bonding is responsible for the different Raman spectra in solid and solution states of p-Nitrothiophenol (PNTP). The consistence of the theoretical calculation and experiment reveals that the intermolecular hydrogen bonding yields an octatomic ring structure (8) of PNTP in the solid state, confirmed by the characteristic S-H---O stretching vibration mode at 2550 cm; when it comes to the solution state, the breakage of hydrogen bond of S-H---O induced the S-H stretching vibration at 2590 cm.
View Article and Find Full Text PDFThe presenilins (PS1 and PS2) are the catalytic component of the γ-secretase intramembrane protease complex, involved in the regulated intramembrane proteolysis of numerous type I transmembrane proteins, including amyloid precursor protein (APP) and Notch. Herein, we describe the identification and characterization of a CUE (coupling of ubiquitin conjugation to endoplasmic reticulum degradation) ubiquitin-binding domain (UBD) in PS1, and demonstrate that the CUE domain of PS1 mediates non-covalent binding to Lysine 63-linked polyubiquitin chains. Our results highlight a γ-secretase-independent function for non-covalent ubiquitin signaling in the regulation of PS1, and add new insights into the structure and function of the presenilin proteins.
View Article and Find Full Text PDFMutations in presenilins (PS1 and PS2) have been linked to the pathogenesis of early onset familial Alzheimer's disease. Presenilins function as the catalytic component of the γ-secretase protease complexes responsible for the cleavage of the amyloid precursor protein (APP), subsequent generation of amyloid-β and associated amyloid plaques in Alzheimer's disease. Biochemical and genetic studies have revealed that through interactions with several proteins, the presenilins are functionally involved in a range of cellular processes, including the regulation of intracellular calcium homeostasis.
View Article and Find Full Text PDF