Aim And Objective: Because of the low abundance of 3,4-unsubstituted coumarins in plants combined with the complex purification process required, synthetic routes towards 3,4-unsubstituted coumarins are especially valuable. In the present work, we explore the possibilities of a solvent-free Green Knoevenagel condensation on various 2-hydroxybenzaldehyde derivatives and malonic acid without the use of toxic organocatalysts like pyridine and piperidine but only use ammonium bicarbonate as the catalyst.
Materials And Methods: To investigate the scope of the Green Knoevenagel condensation for the synthesis of 3,4-unsubstituted coumarins, various 2-hydroxybenzaldehyde derivatives were screened as starting material in the optimized two-step procedure developed for 2-hydroxybenzaldehyde.
Background: Severe combined immunodeficiency (SCID) comprises a heterogeneous group of heritable deficiencies of humoral and cell-mediated immunity. Many patients with SCID have lymphocyte-activation defects that remain uncharacterized.
Methods: We performed genetic studies in four patients, from four families of Northern Cree ancestry, who had clinical characteristics of SCID, including early onset of severe viral, bacterial, and fungal infections despite normal B-cell and T-cell counts.
The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus.
View Article and Find Full Text PDFThe nuclease ARTEMIS is an essential factor of V(D)J recombination during lymphocyte development and in the repair of DNA double-strand breaks (DSB) by the nonhomologous end joining (NHEJ) pathway. Patients with mutations in the DCLRE1C gene, which encodes ARTEMIS, suffer from radiosensitive B(-/low) T(-/low) severe combined immunodeficiency (SCID) or radiosensitive Omenn syndrome. To date, causative DCLRE1C mutations inherited as a recessive trait have been reported in 49 patients.
View Article and Find Full Text PDFHuman severe combined immunodeficiencies (SCID) are phenotypically and genotypically heterogeneous diseases. Reticular dysgenesis is the most severe form of inborn SCID. It is characterized by absence of granulocytes and almost complete deficiency of lymphocytes in peripheral blood, hypoplasia of the thymus and secondary lymphoid organs, and lack of innate and adaptive humoral and cellular immune functions, leading to fatal septicemia within days after birth.
View Article and Find Full Text PDFJ Microencapsul
November 2003
In 1997, a research programme was initiated to assess the ability of nanospheres (NS) to improve the biodelivery of a new insecticide to plants. Stable polymeric NS, with a size near 135 nm and an encapsulation rate in the range of 3.5%, have been obtained using a nanoprecipitation method with Eudragit S100 polymer.
View Article and Find Full Text PDFA new triacid scaffold is described based on the cone-shaped cyclotriveratrylene (CTV) molecule that facilitates the triple helical folding of peptides containing either a unique blood platelet binding collagen sequence or collagen peptides composed of Pro-Hyp-Gly repeats. The latter were synthesized by segment condensation using Fmoc-Pro-Hyp-Gly-OH. Peptides were coupled to this CTV scaffold and also coupled to the Kemp's triacid (KTA) scaffold.
View Article and Find Full Text PDFIron oxide nanoparticles are used in vivo as contrast agents in magnetic resonance imaging. Their widely used polymer coatings are directly involved in their biocompatibility and avoid magnetic aggregation. As these polymer brushes also limit their tissular diffusion due to important hydrodynamic sizes, this work looks to obtain particles coated with thin layers of organic biocompatible molecules.
View Article and Find Full Text PDFLow-density lipoprotein (LDL) has been proposed as carrier for the selective delivery of anticancer drugs to tumor cells. We reported earlier the association of several lipidic steroid-conjugated anticancer oligodeoxynucleotides (ODNs) with LDL. In the present study, we determined the stability of these complexes.
View Article and Find Full Text PDFMethods Mol Med
October 2012
The ability of antisense oligonucleotides to interdict, sequence-specifically, the expression of pathogenic genes affords an exciting new strategy for therapeutic intervention (1-3). Oligonucleotides with physiological phosphodiester internucleotide bonds are rapidly degraded, predominantly by exonucleases. Numerous oligonucleotide analogs have therefore been synthesized to confer resistance toward nuclease activity (3).
View Article and Find Full Text PDFSeveral studies have shown improved efficacy of cholesteryl-conjugated phosphorothioate antisense oligodeoxynucleotides. To gain insight into the mechanisms of the improved efficacy in vivo, we investigated the disposition of ISIS-9388, the 3'-cholesterol analog of the ICAM-1-specific phosphorothioate oligodeoxynucleotide ISIS-3082, in rats. Intravenously injected [(3)H]ISIS-9388 was cleared from the circulation with a half-life of 49.
View Article and Find Full Text PDFOur aim is to selectively deliver 9-(2-phosphonylmethoxyethyl)adenine (PMEA) to parenchymal liver cells, the primary site of hepatitis B virus (HBV) infection. Selective delivery is necessary because PMEA, which is effective against HBV in vitro, is hardly taken up by the liver in vivo. Lactosylated reconstituted high-density lipoprotein (LacNeoHDL), a lipid particle that is specifically internalized by parenchymal liver cells via the asialoglycoprotein receptor, was used as the carrier.
View Article and Find Full Text PDFThe exact mechanisms of cerebral arterial hypoxia are not perfectly defined. Our purpose is to adapt and validate, with drugs well known in rats and rabbits, a closed cranial window technique in gerbils. The method was used with seventeen gerbils to measure diameter changes of the pial arterioles under normoxia (after the topical application of agonists and antagonists of ATP-sensitive and Ca2+-dependent potassium channels), as well as under hypoxia.
View Article and Find Full Text PDFPurpose: 9-(2-Phosphonylmethoxyethyl)adenine (PMEA), a potent inhibitor of Hepatitis B virus replication, is in vivo hardly taken up by parenchymal liver cells (the site of infection). Our aim is to examine whether lactosylated reconstituted HDL (LacNeoHDL), a lipidic particle that is specifically internalized by parenchymal liver cells, is a suitable carrier for the selective delivery of PMEA to this cell type.
Methods: To incorporate PMEA into LacNeoHDL, we synthesized a lipophilic prodrug (PMEA-LO) by coupling PMEA via an acid-labile phosphonamidate bond to lithocholic acid-3alpha-oleate.
Anti-sense oligodeoxynucleotides (ODNs) hold great promise for correcting the biosynthesis of clinically relevant proteins. The potential of ODNs for modulating liver-specific genes might be increased by preventing untimely elimination and by improving the local bioavailability of ODNs in the target tissue. In the present study we have assessed whether the local ODN concentration can be enhanced by the targeted delivery of ODNs through conjugation to a ligand for the parenchymal liver cell-specific asialoglycoprotein receptor.
View Article and Find Full Text PDFMany tumors express elevated levels of low-density lipoprotein (LDL) receptors. Therefore, native LDL and synthetic LDL-like particles have been proposed as carriers for antineoplastic drugs. We demonstrated earlier that small apolipoprotein E (apoE)-exposing liposomes were specifically recognized by the LDL receptor.
View Article and Find Full Text PDFA series of glycolipids have been prepared which contain a cluster galactoside moiety with high affinity for the hepatic asialoglycoprotein receptor and a bile acid ester moiety which mediates stable incorporation into liposomes. Loading of liposomes with these glycolipids at a ratio of 5% (w/w) resulted in efficient recognition and uptake of the liposomes by the liver. Preinjection with asialofetuin almost completely inhibited the uptake, establishing that the liposomes were selectively recognized and processed by the asialoglycoprotein receptor on liver parenchymal cells.
View Article and Find Full Text PDFIn order to develop thin-walled superparamagnetic nanoparticle suspensions as a contrast agent for magnetic resonance imaging, phosphorylcholine PC was used to coat iron oxide cores of 5 nm. Weak stable positively charged suspensions can be obtained at concentration greater than 3 mmol.l-1 (corresponding to about 3.
View Article and Find Full Text PDFMany tumours express relatively high levels of low-density lipoprotein (LDL) receptors on their membranes. The LDL receptor is, therefore, an attractive target for the selective delivery of antineoplastic drugs to tumour cells. We reported previously on the synthesis of small apolipoprotein E (apoE)-containing liposomes that behave in vivo in a very similar way to native LDL.
View Article and Find Full Text PDFPurpose: Many tumors express elevated levels of LDL receptors (apoB, E receptors) on their membranes. Selective delivery of anti-neoplastic drugs to tumors by incorporation of these drugs into LDL or LDL-resembling particles should improve the efficacy of tumor therapy and minimize the severe side-effects. Since the apolipoproteins on the particles are essential for the LDL receptor recognition, drugs should preferably be incorporated into the lipid moiety.
View Article and Find Full Text PDFThe high expression level of receptors for low-density lipoprotein (LDL) on tumor cells makes LDL an attractive carrier for selective delivery of drugs to these cells. The aim of this study is to allow incorporation of oncogene-directed antisense oligodeoxynucleotides (ODNs) into the lipid moiety of LDL. Therefore, ODNs were conjugated with oleic acid, cholesterol, and several other steroid lipids.
View Article and Find Full Text PDFSystemically administered phosphorothioate antisense oligodeoxynucleotides can specifically affect the expression of their target genes, which affords an exciting new strategy for therapeutic intervention. Earlier studies point to a major role of the liver in the disposition of these oligonucleotides. The aim of the present study was to identify the cell type(s) responsible for the liver uptake of phosphorothioate oligodeoxynucleotides and to examine the mechanisms involved.
View Article and Find Full Text PDF