Publications by authors named "Rummana Bari"

Stressful conversation is a frequently occurring stressor in our daily life. Stressors not only adversely affect our physical and mental health but also our relationships with family, friends, and coworkers. In this paper, we present a model to automatically detect stressful conversations using wearable physiological and inertial sensors.

View Article and Find Full Text PDF

Monitoring of in-person conversations has largely been done using acoustic sensors. In this paper, we propose a new method to detect moment-by-moment conversation episodes by analyzing breathing patterns captured by a mobile respiration sensor. Since breathing is affected by physical and cognitive activities, we develop a comprehensive method for cleaning, screening, and analyzing noisy respiration data captured in the field environment at individual breath cycle level.

View Article and Find Full Text PDF

Differential privacy concepts have been successfully used to protect anonymity of individuals in population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise different privacy challenges, that of protecting private behaviors that can be revealed from time series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation.

View Article and Find Full Text PDF

Background: Ambulatory physiological monitoring could clarify antecedents and consequences of drug use and could contribute to a sensor-triggered mobile intervention that automatically detects behaviorally risky situations. Our goal was to show that such monitoring is feasible and can produce meaningful data.

Methods: We assessed heart rate (HR) with AutoSense, a suite of biosensors that wirelessly transmits data to a smartphone, for up to 4 weeks in 40 polydrug users in opioid-agonist maintenance as they went about their daily lives.

View Article and Find Full Text PDF

Stress can lead to headaches and fatigue, precipitate addictive behaviors (e.g., smoking, alcohol and drug use), and lead to cardiovascular diseases and cancer.

View Article and Find Full Text PDF

Wearable wireless sensors for health monitoring are enabling the design and delivery of just-in-time interventions (JITI). Critical to the success of JITI is to time its delivery so that the user is available to be engaged. We take a first step in modeling users' availability by analyzing 2,064 hours of physiological sensor data and 2,717 self-reports collected from 30 participants in a week-long field study.

View Article and Find Full Text PDF