Publications by authors named "Rumit Maini"

Oral delivery of peptide therapeutics is limited by degradation by gut proteases like chymotrypsin. Existing databases of peptidases are limited in size and do not enable systematic analyses of protease substrate preferences, especially for non-natural amino acids. Thus, stability optimization of hit compounds is time and resource intensive.

View Article and Find Full Text PDF

The introduction of noncanonical amino acids into proteins and peptides has been of great interest for many years and has facilitated the detailed study of peptide/protein structure and mechanism. In addition to numerous nonproteinogenic α-l-amino acids, bacterial ribosome modification has provided the wherewithal to enable the synthesis of peptides and proteins with a much greater range of structural diversity, as has the use of endogenous bacterial proteins in reconstituted protein synthesizing systems. In a recent report, elongation factor P (EF-P), putatively essential for enabling the incorporation of contiguous proline residues into proteins, was shown to facilitate the introduction of an N-methylated amino acid in addition to proline.

View Article and Find Full Text PDF

Protein engineering has great potential for devising multifunctional recombinant proteins to serve as next-generation protein therapeutics, but it often requires drastic modifications of the parental protein scaffolds e.g., additional domains at the N/C-terminus or replacement of a domain by another.

View Article and Find Full Text PDF

It has been well established that the ribosome can accept various nucleophiles on the Xacyl-tRNA in the A site during elongation, where X can be amino, -alkyl-amino, hydroxy, and thiol groups. However, it remains elusive that the ribosome is able to accept an electrophile in the P site other than the carboxyl group during elongation. Here we report ribosomal formation of a thioamide bond in the mRNA-dependent polypeptide synthesis.

View Article and Find Full Text PDF

Phosphorylated proteins play important roles in the regulation of many different cell networks. However, unlike the preparation of proteins containing unmodified proteinogenic amino acids, which can be altered readily by site-directed mutagenesis and expressed in vitro and in vivo, the preparation of proteins phosphorylated at predetermined sites cannot be done easily and in acceptable yields. To enable the synthesis of phosphorylated proteins for in vitro studies, we have explored the use of phosphorylated amino acids in which the phosphate moiety bears a chemical protecting group, thus eliminating the negative charges that have been shown to have a negative effect on protein translation.

View Article and Find Full Text PDF

Peptide natural products (PNPs) represent a unique class of compounds known for their fascinating structural motifs with important biological activities. Lately, PNPs have garnered a lot of interest for their application in drug discovery. Nevertheless, lack of diversity oriented synthetic/biosynthetic platforms to generate large natural product-like libraries has limited their development as peptide therapeutics.

View Article and Find Full Text PDF

The synthesis and incorporation into position 66 of green fluorescent protein (GFP) by in vitro protein translation of novel oxazole and thiazole based dipeptidomimetics are described. The compounds may be regarded as GFP chromophore analogues, and are strongly fluorescent. An α-amido-β-ketoester intermediate was obtained via bisacylation of a protected glycine.

View Article and Find Full Text PDF

Plasmids containing 23S rRNA randomized at positions 2057-2063 and 2502-2507 were introduced into Escherichia coli, affording a library of clones which produced modified ribosomes in addition to the pre-existing wild-type ribosomes. These clones were screened with a derivative of puromycin, a natural product which acts as an analogue of the 3'-end of aminoacyl-tRNA and terminates protein synthesis by accepting the growing polypeptide chain, thereby killing bacterial cells. The puromycin derivative in this study contained the dipeptide p-methoxyphenylalanylglycine, implying the ability of the modified ribosomes in clones sensitive to this puromycin analogue to recognize dipeptides.

View Article and Find Full Text PDF

In an earlier study, β³-puromycin was used for the selection of modified ribosomes, which were utilized for the incorporation of five different β-amino acids into Escherichia coli dihydrofolate reductase (DHFR). The selected ribosomes were able to incorporate structurally disparate β-amino acids into DHFR, in spite of the use of a single puromycin for the selection of the individual clones. In this study, we examine the extent to which the structure of the β³-puromycin employed for ribosome selection influences the regio- and stereochemical preferences of the modified ribosomes during protein synthesis; the mechanistic probe was a single suppressor tRNA(CUA) activated with each of four methyl-β-alanine isomers (1-4).

View Article and Find Full Text PDF

Ribosomes containing modifications in three regions of 23S rRNA, all of which are in proximity to the ribosomal peptidyltransferase center (PTC), were utilized previously as a source of S-30 preparations for in vitro protein biosynthesis experiments. When utilized in the presence of mRNAs containing UAG codons at predetermined positions+β-alanyl-tRNA(CUA), the modified ribosomes produced enhanced levels of full length proteins via UAG codon suppression. In the present study, these earlier results have been extended by the use of substituted β-amino acids, and direct evidence for β-amino acid incorporation is provided.

View Article and Find Full Text PDF

Structure-activity studies were employed to investigate the stabilization of DNA-topoisomerases I and II covalent binary complexes by topopyrone analogues. The synthesis of five new topopyrone derivatives and study of their ability to stabilize DNA-topoisomerase I and DNA-topoisomerase II covalent binary complexes are described. The biochemical assays suggest that the orientation of the fused 1,4-pyrone ring and halogen substituents contribute importantly to the overall potency of the topopyrones as topoisomerase poisons.

View Article and Find Full Text PDF