Object: Regeneration of peripheral nerves is remarkably restrained across transection injuries, limiting recovery of function. Strategies to reverse this common and unfortunate outcome are limited. Remarkably, however, new evidence suggests that a brief extracellular electrical stimulation (ES), delivered at the time of injury, improves the regrowth of motor and sensory axons.
View Article and Find Full Text PDFBiomech Model Mechanobiol
February 2010
In this paper, we apply mixture theory to quantitatively predict the transient behavior of drug delivery by using a microneedle array inserted into tissue. In the framework of mixture theory, biological tissue is treated as a multi-phase fluid saturated porous medium, where the mathematical behavior of the tissue is characterized by the conservation equations of multi-phase models. Drug delivery by microneedle array imposes additional requirements on the simulation procedures, including drug absorption by the blood capillaries and tissue cells, as well as a moving interface along its flowing pathway.
View Article and Find Full Text PDF