Immunological behavior of graft-infiltrating lymphocytes (GILs) determines the graft fate (i.e., rejection or acceptance).
View Article and Find Full Text PDFWe have previously demonstrated the unique properties of a new triazolopyrimidine derivative, NK026680, which exerts immunosuppressive effects in rat heart transplant model and confers tolerogeneic properties on ex vivo-conditioned dendritic cells in mice. We herein demonstrate that NK026680 promotes the expansion of regulatory T cells (Tregs) with potent immunoregulatory effects when used in combination with donor-specific transfusion (DST). BALB/c (H-2) heart graft were transplanted into C57BL/6 (H-2) mice following intravenous injection of donor splenocytes (DST) and oral administration of NK026680.
View Article and Find Full Text PDFBackground: Graft arterial disease (GAD) is a major cause of late graft loss after organ transplantation. Alloimmune responses and vascular remodeling eventually cause the transplant organ to develop GAD. In this study, we aimed to limit the development of GAD by inhibiting alloimmune responses and vascular smooth muscle cell (VSMC) proliferation with a new compound, 3-[(dodecylthiocarbonyl)methyl]-glutarimide ([DTCM]-glutarimide), in a murine cardiac model of GAD.
View Article and Find Full Text PDFBackground: A newly developed compound, 3-[(dodecylthiocarbonyl)methyl]-glutarimide (DTCM-G), has been shown to inhibit nuclear translocation of c-Fos/c-Jun in a murine macrophage cell line. Herein, we studied the immunosuppressive properties and potency of DTCM-G.
Methods: Using purified mouse T cells, the in vitro effects of DTCM-G on activation, cytokine production, proliferation, and cell cycle progression were assessed, and a possible molecular target of DTCM-G was investigated.
Background: Pharmacologically modulated dendritic cells (DCs) can potentially regulate alloimmune responses. We examined the characteristics of immunoregulatory DCs induced by a novel triazolopyrimidine derivative, NK026680, which has been previously shown to inhibit DC maturation.
Methods: DCs were generated from bone marrow progenitor cells from C57BL/6 (B6, H-2 haplotype) mice with granulocyte-macrophage colony-stimulating factor and interleukin (IL)-4.
Background: Nuclear factor-κB (NF-κB) is a key molecule in alloimmune responses, however, its role in tolerance induction is not clear. We have previously reported that dehydroxymethylepoxyquinomycin (DHMEQ), a novel NF-κB inhibitor, prolongs cardiac allograft survival. In this study, we evaluated the immunomodulatory effects of DHMEQ when combined with a donor-specific blood transfusion (DST), and assessed whether the treatment induces tolerance in a mouse heart transplantation model.
View Article and Find Full Text PDFNK026680 is a triazolopyrimidine derivative that has been shown to inhibit dendritic cell maturation and activation. Here, we examined the immunosuppressive properties of NK026680 on T-cell function and assessed its immunosuppressive efficacy in an ACI (RT1(av1) haplotype) to Lewis (RT1(l)) rat heart transplantation model. The effects of NK026680 on T-cell proliferation, activation, and cytokine production were investigated in vitro.
View Article and Find Full Text PDFBackground/aims: Liver regeneration following hepatectomy is complicated and involves a variety of interacting factors. The present study was designed to study the roles of proliferation and hypertrophy of hepatocytes in liver regeneration following hepatectomy in liver-specific STAT3-knockout (LS3-KO) mice lacking mitogenic activity.
Methods: Partial hepatectomy was performed in LS3-KO and control mice.