Publications by authors named "Rumeysa Akcapınar"

In this study, a nanoparticle-based sandwich-like immunoassay was designed in dispersion medium to precisely detect apoptosis over caspase antibodies in order to overcome the disadvantages of traditional apoptosis determination methods such as high cost, large sampling requirement, and appropriate laboratory and equipment conditions. For this purpose, a complementary particulate system including magnetic (MNPs) and upconversion silica (UC-SiNPs) nanoparticles while immobilizing antibodies (primary antibody to MNPs, secondary antibody to UC-SiNPs) were synthesized and characterized. Optimization and selectivity studies of the complex formed by primary antibody immobilized MNPs with standard caspase proteins were examined by the HPLC system.

View Article and Find Full Text PDF

Apoptosis is a type of cell death caused by the occurrence of both pathological and physiological conditions triggered by ligation of death receptors outside the cell or triggered by DNA damage and/or cytoskeleton disruption. Timely monitoring of apoptosis can effectively help early diagnosis of related diseases and continuous assessment of the effectiveness of drugs. Detecting caspases, a protease family closely related to cellular apoptosis, and its identification as markers of apoptosis is a popular procedure.

View Article and Find Full Text PDF

Peptide based hydrogels gained a vast interest in the tissue engineering studies thanks to great superiorities such as biocompatibility, supramolecular organization without any need of additional crosslinker, injectability and tunable nature. Fmoc-diphenylalanine (FmocFF) is one of the earliest and widely used example of these small molecule gelators that have been utilized in biomedical studies. However, Fmoc-peptides are not feasible for long term use due to low stability and weak mechanical properties at neutral pH.

View Article and Find Full Text PDF