Publications by authors named "Rumbidzai Zizhou"

Pelvic floor disorders, including pelvic organ prolapse (POP) and stress urinary incontinence (SUI), are serious and very common. Surgery is commonly undertaken to restore the strength of the vaginal wall using transvaginal surgical mesh (TVM). However, up to 15% of TVM implants result in long-term complications, including pain, recurrent symptoms, and infection.

View Article and Find Full Text PDF

Compliance mismatch of commercially available artificial grafts, where the artificial graft and the native vessel are subject to different radial expansions, is a major issue that results in graft occlusion after implantation. A human artery possesses a nonlinear mechanical response to pulsatile pressure due to its nonlinear viscoelastic nature, which is difficult to replicate in artificial graft fabrication. Here, we fabricated nanocomposites with nonlinear mechanical responses for potential application as the load-bearing layer of vascular grafts, based on a poly(dimethylsiloxane) (PDMS)-casted nanofibrous film.

View Article and Find Full Text PDF

ZnO nanoparticles (NPs) show remarkable efficiency in removing various contaminants from aqueous systems. Doping ZnO NPs with a second metal element can dramatically change the physicochemical properties of the pristine nanoparticles. However, there have been limited reports on the absorption of doped ZnO NPs, especially comparing the performance of ZnO NPs with different doping elements.

View Article and Find Full Text PDF

Small-diameter artificial vascular grafts (SDAVG) are used to bypass blood flow in arterial occlusive diseases such as coronary heart or peripheral arterial disease. However, SDAVGs are plagued by restenosis after a short while due to thrombosis and the thickening of the neointimal wall known as intimal hyperplasia (IH). The specific causes of IH have not yet been deduced; however, thrombosis formation due to bioincompatibility as well as a mismatch between the biomechanical properties of the SDAVG and the native artery has been attributed to its initiation.

View Article and Find Full Text PDF

Gallium and its alloys, such as eutectic gallium indium alloy (EGaIn), a form of liquid metal, have recently attracted the attention of researchers due to their low toxicity and electrical and thermal conductivity for biomedical application. However, further research is required to harness EGaIn-composites advantages and address their application as a biomedical scaffold. In this research, EGaIn-polylactic acid/polycaprolactone composites with and without a second conductive filler, MXene, were prepared and characterized.

View Article and Find Full Text PDF