Publications by authors named "Rull F"

Revealing the origin of life and unambiguously detecting fossil remains of the earliest organisms are closely related aspects of the same scientific research. The synthesis of prebiotic molecular building blocks of life and the first compartmentalization into protocells have been considered two events apart in time, space, or both. We conducted lightning experiments in borosilicate reactors filled with a mixture of gases mimicking plausible geochemical conditions of early Earth.

View Article and Find Full Text PDF

In this work, a geological sample of great astrobiological interest was studied through analytical techniques that are currently operating in situ on Mars and others that will operate in the near future. The sample analyzed consisted of an oncoid, which is a type of microbialite, collected in the Salar Carachi Pampa, Argentina. The main peculiarity of microbialites is that they are organo-sedimentary deposits formed by the in situ fixation and precipitation of calcium carbonate due to the growth and metabolic activities of microorganisms.

View Article and Find Full Text PDF

Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as "dark microbiome", and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment.

View Article and Find Full Text PDF
Article Synopsis
  • Before the Perseverance rover, Jezero crater's floor was theorized to have different origins, including lake-related or volcanic processes.
  • SuperCam's findings over the first 286 days indicated a volcanic terrain characterized by varying compositions, primarily basaltic, with higher levels of plagioclase in upper strata and richer pyroxene in lower strata.
  • The study identified the first Martian cumulate rock, highlighting its olivine-rich content and suggesting brief past watery conditions based on the presence of various alteration materials.
View Article and Find Full Text PDF

The network of lava tubes is one of the most unexploited natural wonders of the Galapagos Islands. Here, we provide the first morphological, mineralogical, and biogeochemical assessment of speleothems from volcanic caves of the Galapagos to understand their structure, composition, and origin, as well as to identify organic molecules preserved in speleothems. Mineralogical analyses revealed that moonmilk and coralloid speleothems from Bellavista and Royal Palm Caves were composed of calcite, opal-A, and minor amounts of clay minerals.

View Article and Find Full Text PDF

The SuperCam instrument, onboard the Perseverance rover (Mars 2020 mission) is designed to perform remote analysis on the Martian surface employing several spectroscopic techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR), Time-Resolved Fluorescence (TRF) and Visible and Infrared (VISIR) reflectance. In addition, SuperCam also acquires high-resolution images using a color remote micro-imager (RMI) as well as sounds with its microphone. SuperCam has three main subsystems, the Mast Unit (MU) where the laser for chemical analysis and collection optics are housed, the Body Unit (BU) where the different spectrometers are located inside the rover, and the SuperCam Calibration Target (SCCT) located on the rover's deck to facilitate calibration tests at similar ambient conditions as the analyzed samples.

View Article and Find Full Text PDF

The 2020s could be called, with little doubt, the "Mars decade". No other period in space exploration history has experienced such interest in placing orbiters, rovers and landers on the Red Planet. In 2021 alone, the Emirates' first Mars Mission (the Hope orbiter), the Chinese Tianwen-1 mission (orbiter, lander and rover), and NASA's Mars 2020 Perseverance rover reached Mars.

View Article and Find Full Text PDF

The Planetary Terrestrial Analogues Library (PTAL) project aims at building and exploiting a database involving several analytical techniques, to help characterize the mineralogical evolution of terrestrial bodies, starting with Mars. Around 100 natural Earth rock samples have been collected from selected locations to gather a variety of analogs for martian geology, from volcanic to sedimentary origin with different levels of alteration. All samples are to be characterized within the PTAL project with different mineralogical and elemental analysis techniques, including techniques brought on actual and future instruments at the surface of Mars (near infrared [NIR] spectroscopy, Raman spectroscopy, and laser-induced breakdown spectroscopy).

View Article and Find Full Text PDF

The Mars 2020 Perseverance rover landed on February 18, 2021, and has started ground operations. The ExoMars rover will touch down on June 10, 2023. Perseverance will be the first-ever Mars sample caching mission-a first step in sample return to Earth.

View Article and Find Full Text PDF

Most recently in 2018 and 2019, large parts of Europe were affected by periods of massive drought. Resulting losses in cereal yield pose a major risk to the global supply of barley, as more than 60% of global production is based in Europe. Despite the arising price fluctuations on the cereal market, authenticity of the crop must be ensured, which includes correct declaration of harvest years.

View Article and Find Full Text PDF

In this work, the analytical research performed by the Raman Laser Spectrometer (RLS) team during the ExoFiT trial is presented. During this test, an emulator of the Rosalind Franklin rover was remotely operated at the Atacama Desert in a Mars-like sequence of scientific operations that ended with the collection and the analysis of two drilled cores. The in-situ Raman characterization of the samples was performed through a portable technology demonstrator of RLS (RAD1 system).

View Article and Find Full Text PDF

The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas.

View Article and Find Full Text PDF

SuperCam is a highly integrated remote-sensing instrumental suite for NASA's Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover.

View Article and Find Full Text PDF

We evaluated the effectiveness of the ExoMars Raman laser spectrometer (RLS) to determine the degree of serpentinization of olivine-rich units on Mars. We selected terrestrial analogs of martian ultramafic rocks from the Leka Ophiolite Complex (LOC) and analyzed them with both laboratory and flight-like analytical instruments. We first studied the mineralogical composition of the samples (mostly olivine and serpentine) with state-of-the-art diffractometric (X-ray diffractometry [XRD]) and spectroscopic (Raman, near-infrared spectroscopy [NIR]) laboratory systems.

View Article and Find Full Text PDF

This work aims to evaluate whether the multi-point analysis the ExoMars Raman Laser Spectrometer (RLS) will perform on powdered samples could serve to classify ultramafic rocks on Mars. To do so, the RLS ExoMars Simulator was used to study terrestrial analogues of Martian peridotites and pyroxenites by applying the operational constraints of the Raman spectrometer onboard the Rosalind Franklin rover. Besides qualitative analysis, RLS-dedicated calibration curves have been built to estimate the relative content of olivine and pyroxenes in the samples.

View Article and Find Full Text PDF

In the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman laser spectrometer (RLS) ExoMars Simulator.

View Article and Find Full Text PDF

The aim of the European Space Agency's ExoMars rover mission is to search for potential traces of present or past life in the swallow subsurface (2 m depth) of Mars. The ExoMars rover mission relies on a suite of analytical instruments envisioned to identify organic compounds with biological value (biomarkers) associated with a mineralogical matrix in a highly oxidative environment. We investigated the feasibility of detecting basic organics (linear and branched lipid molecules) with Raman laser spectroscopy, an instrument onboard the ExoMars rover, when exposed to oxidant conditions.

View Article and Find Full Text PDF

Perfluorocarbon liquids (PFCLs) have been considered safe for intraocular manipulation of the retina, but since 2013 many cases of acute eye toxicity cousing blindness have been reported in various countries when using various commercial PFCLs. All these PFCLs were CE marked (Conformité Européenne), which meant they had been subjected to evaluation complying with the International Organization for Standardization (ISO) guidelines. These dramatic events raised questions about the safety of PFCLs and the validity of some cytotoxicity tests performed under ISO guidelines.

View Article and Find Full Text PDF

We present the compositional analysis of three terrestrial analogues of Martian olivine-bearing rocks derived from both laboratory and flight-derived analytical instruments. In the first step, state-of-the-art spectroscopic (XRF, NIR and Raman) and diffractometric (XRD) laboratory systems were complementary used. Besides providing a detailed mineralogical and geochemical characterization of the samples, results comparison shed light on the advantages ensured by the combined use of Raman and NIR techniques, being these the spectroscopic instruments that will soon deploy (2021) on Mars as part of the ExoMars/ESA rover payload.

View Article and Find Full Text PDF

One of the latest volcanic features of the Erta Ale range at the Afar Triangle (NE Ethiopia) has created a polyextreme hydrothermal system located at the Danakil depression on top of a protovolcano known as the dome of Dallol. The interaction of the underlying basaltic magma with the evaporitic salts of the Danakil depression has generated a unique, high-temperature (108 °C), hypersaline (NaCl supersaturated), hyperacidic (pH values from 0.1 to -1.

View Article and Find Full Text PDF

Aims: To report new information related to acute retinal toxicity of Bio Octane Plus, a mixture of 90% perfluorooctane (PFO) and 10% perfluorohexyloctane.

Methods: This retrospective, descriptive case series reports the occurrence of acute retinal toxicity after vitreoretinal surgery in which Bio Octane Plus (batch number 1605148) was used as an endotamponade. Cytotoxicity biocompatibility tests and chemical analyses by Fourier-transformed infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) of the presumed toxic product were performed.

View Article and Find Full Text PDF

A series of recent acute blindness cases following non-complicated retinal detachment surgery caused the release of several health alerts in Spain. The blindness was attributed to certain lots of perfluoro-octane (PFO; a volatile and transient medical device). Similar cases have been reported in other countries.

View Article and Find Full Text PDF

The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m.

View Article and Find Full Text PDF