Fibroblast growth factor 23 (FGF23) plays an important role in phosphate homeostasis, and increased FGF23 levels result in hypophosphatemia; however, the molecular mechanism underlying increased FGF23 expression has not been fully elucidated. In this study, we found that mice lacking the bobby sox homolog (Bbx) presented increased FGF23 expression and low phosphate levels in the serum and skeletal abnormalities such as a low bone mineral density (BMD) and bone volume (BV), as well as short and weak bones associated with low bone formation. Osteocyte-specific deletion of Bbx using Dmp-1-Cre resulted in similar skeletal abnormalities, elevated serum FGF23 levels, and reduced serum phosphate levels.
View Article and Find Full Text PDFKey Points: Aberrant enhancer–promoter interactions detected by Hi-C drive ectopic expression of in the Six2TGCtg line. Disruption of in the Six2TGCtg line restores nephron number, implicating SIX3 interference with SIX2 function in nephron progenitor cell renewal.
Background: Lifelong kidney function relies on the complement of nephrons generated during mammalian development from a mesenchymal nephron progenitor cell population.
Unlabelled: Lifelong kidney function relies on the complement of nephrons generated during mammalian development from a mesenchymal nephron progenitor cell (NPC) population. Low nephron endowment confers increased susceptibility to chronic kidney disease. We asked whether reduced nephron numbers in the popular transgenic mouse line was due to disruption of a regulatory gene at the integration site or to ectopic expression of a gene(s) contained within the transgene.
View Article and Find Full Text PDFThe evolution of jaws has played a major role in the success of vertebrate expansion into a wide variety of ecological niches. A fundamental, yet unresolved, question in craniofacial biology is about the origin of the premaxilla, the most distal bone present in the upper jaw of all amniotes. Recent reports have suggested that the mammalian premaxilla is derived from embryonic maxillary prominences rather than the frontonasal ectomesenchyme as previously shown in studies of chicken embryos.
View Article and Find Full Text PDFMutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
View Article and Find Full Text PDFFour SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
April 2023
Background & Aims: Liver macrophage-mediated inflammation contributes to the pathogenesis of the nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Odd skipped-related 1 (Osr1) is a putative transcription factor previously reported to be involved in NASH progression; however, the underlying mechanisms remain unknown. The current study focused on the role of Osr1 in macrophage polarization and metabolism and its associated functions in the inflammation-induced pathogenesis of NASH.
View Article and Find Full Text PDFThe tongue is a highly specialized muscular organ with diverse cellular origins, which provides an excellent model for understanding mechanisms controlling tissue-tissue interactions during organogenesis. Previous studies showed that SHH signaling is required for tongue morphogenesis and tongue muscle organization, but little is known about the underlying mechanisms. Here we demonstrate that the Foxf1/Foxf2 transcription factors act in the cranial neural crest cell (CNCC)-derived mandibular mesenchyme to control myoblast migration into the tongue primordium during tongue initiation, and thereafter continue to regulate intrinsic tongue muscle assembly and lingual tendon formation.
View Article and Find Full Text PDFCleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion.
View Article and Find Full Text PDFLoss of ALX1 function causes the frontonasal dysplasia syndrome FND3, characterized by severe facial clefting and microphthalmia. Whereas the laboratory mouse has been the preeminent animal model for studying developmental mechanisms of human craniofacial birth defects, the roles of ALX1 in mouse frontonasal development have not been well characterized because the only previously reported mutant mouse line exhibited acrania due to a genetic background-dependent failure of cranial neural tube closure. Using CRISPR/Cas9-mediated genome editing, we have generated an mouse model that recapitulates the FND craniofacial malformations, including median orofacial clefting and disruption of development of the eyes and alae nasi hybridization analysis showed that is strongly expressed in frontonasal neural crest cells that give rise to periocular and frontonasal mesenchyme.
View Article and Find Full Text PDFProper development of tendons is crucial for the integration and function of the musculoskeletal system. Currently little is known about the molecular mechanisms controlling tendon development and tendon cell differentiation. The transcription factor Scleraxis (Scx) is expressed throughout tendon development and plays essential roles in both embryonic tendon development and adult tendon healing, but few direct target genes of Scx in tendon development have been reported and genome-wide identification of Scx direct target genes has been lacking.
View Article and Find Full Text PDFFront Cell Dev Biol
April 2021
Disruption of , encoding a member of the Forkhead family transcription factors, has been associated with cleft palate in humans and mice. is located in a conserved gene cluster containing , , and . We found that expression of is dramatically upregulated in the embryonic palatal mesenchyme in mouse embryos.
View Article and Find Full Text PDFBackground: Previous studies showed that mice lacking Fgf18 function had cleft palate defects and that the FGF18 locus was associated with cleft lip and palate in humans, but what specific roles Fgf18 plays during palatogenesis are unclear.
Results: We show that Fgf18 exhibits regionally restricted expression in developing palatal shelves, mandible, and tongue, during palatal outgrowth and fusion in mouse embryos. Tissue-specific inactivation of Fgf18 throughout neural crest-derived craniofacial mesenchyme caused shortened mandible and reduction in ossification of the frontal, nasal, and anterior cranial base skeletal elements in Fgf18 ;Wnt1-Cre mutant mice.
Tooth root development occurs through the interaction of multiple growth factors and transcription factors expressed in Hertwig's epithelial root sheath (HERS) and dental mesenchyme. Previously, we demonstrated that bobby sox homolog (Bbx) regulates odontoblast differentiation of human dental pulp stem cells. Here, we generated Bbx knockout (Bbx ) mice to address the functional role of Bbx in tooth formation.
View Article and Find Full Text PDFHeterozygous deletion of Six2, which encodes a member of sine oculis homeobox family transcription factors, has recently been associated with the frontonasal dysplasia syndrome FND4. Previous studies showed that Six2 is expressed in multiple tissues during craniofacial development in mice, including embryonic head mesoderm, postmigratory frontonasal neural crest cells, and epithelial and mesenchymal cells of the developing palate and nasal structures. Whereas Six2 mice exhibited cranial base defects but did not recapitulate frontonasal phenotypes of FND4 patients, Six1 Six2 double mutant mice showed severe craniofacial defects including midline facial clefting.
View Article and Find Full Text PDFDevelopment of vertebrate jaws involves patterning neural crest-derived mesenchyme cells into distinct subpopulations along the proximal-distal and oral-aboral axes. Although the molecular mechanisms patterning the proximal-distal axis have been well studied, little is known regarding the mechanisms patterning the oral-aboral axis. Using unbiased single-cell RNA-seq analysis followed by in situ analysis of gene expression profiles, we show that Shh and Bmp4 signaling pathways are activated in a complementary pattern along the oral-aboral axis in mouse embryonic mandibular arch.
View Article and Find Full Text PDFHeterotopic ossification is the abnormal formation of mineralized bone in skin, muscle, tendon, or other soft tissues. Tendon ossification often occurs from acute tendon injury or chronic tendon degeneration, for which current treatment relies heavily on surgical removal of the ectopic bony tissues. Unfortunately, surgery creates additional trauma, which often causes recurrence of heterotopic ossification.
View Article and Find Full Text PDFDuring early fetal development, paracrine Hedgehog (HH) ligands secreted from the foregut epithelium activate Gli transcription factors in the surrounding mesenchyme to coordinate formation of the respiratory system, digestive track and the cardiovascular network. Although disruptions to this process can lead to devastating congenital defects, the underlying mechanisms and downstream targets, are poorly understood. We show that the zinc finger transcription factor Osr1 is a novel HH target as Osr1 expression in the foregut mesenchyme depends on HH signaling and the effector of HH pathway Gli3 binds to a conserved genomic loci near Osr1 promoter region.
View Article and Find Full Text PDFMutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1 mice exhibit developmental arrest of all tooth germs at the bud stage, mice with neural crest-specific inactivation of Bmp4 (Bmp4), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars.
View Article and Find Full Text PDFRenal hypoplasia is a common cause of pediatric renal failure and several adult-onset diseases. Recent studies have associated a variant of the OSR1 gene with reduction of newborn kidney size and function in heterozygotes and neonatal lethality with kidney defects in homozygotes. How OSR1 regulates kidney development and nephron endowment is not well understood, however.
View Article and Find Full Text PDFCleft palate is a common major birth defect for which currently known causes account for less than 30% of pathology in humans. In this study, we carried out mutagenesis screening in mice to identify new regulators of palatogenesis. Through genetic linkage mapping and whole-exome sequencing, we identified a loss-of-function mutation in the Golgb1 gene that co-segregated with cleft palate in a new mutant mouse line.
View Article and Find Full Text PDFCleft palate is among the most common birth defects in humans. Previous studies have shown that Shh signaling plays critical roles in palate development and regulates expression of several members of the forkhead-box (Fox) family transcription factors, including Foxf1 and Foxf2, in the facial primordia. Although cleft palate has been reported in mice deficient in Foxf2, whether Foxf2 plays an intrinsic role in and how Foxf2 regulates palate development remain to be elucidated.
View Article and Find Full Text PDFPalatogenesis involves the initiation, growth, morphogenesis, and fusion of the primary and secondary palatal shelves from initially separate facial prominences during embryogenesis to form the intact palate separating the oral cavity from the nostrils. The palatal shelves consist mainly of cranial neural crest-derived mesenchymal cells covered by a simple embryonic epithelium. The growth and patterning of the palatal shelves are controlled by reciprocal epithelial-mesenchymal interactions regulated by multiple signaling pathways and transcription factors.
View Article and Find Full Text PDF