The lung parenchyma-consisting of gas-filled alveoli, vasculature, and connective tissue-is the site for gas exchange in the lung and plays a critical role in a number of chronic lung diseases. In vitro models of lung parenchyma can, therefore, provide valuable platforms for the study of lung biology in health and disease. Yet modeling such a complex tissue requires integrating multiple components, including biochemical cues from the extracellular environment, geometrically defined multicellular interactions, and dynamic mechanical inputs such as the cyclic stretch of breathing.
View Article and Find Full Text PDFTissue fibrosis remains a serious health condition with high morbidity and mortality rates. There is a critical need to engineer model systems that better recapitulate the spatial and temporal changes in the fibrotic extracellular microenvironment and enable study of the cellular and molecular alterations that occur during pathogenesis. Here, we present a process for chemically modifying human decellularized extracellular matrix (dECM) and incorporating it into a dynamically tunable hybrid-hydrogel system containing a poly(ethylene glycol)-α methacrylate (PEGαMA) backbone.
View Article and Find Full Text PDFUnlabelled: Idiopathic pulmonary fibrosis is a chronic disease characterized by progressive lung scarring that inhibits gas exchange. Evidence suggests fibroblast-matrix interactions are a prominent driver of disease. However, available preclinical models limit our ability to study these interactions.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a devastating lung disease that progressively and irreversibly alters the lung parenchyma, eventually leading to respiratory failure. The study of this disease has been historically challenging due to the myriad of complex processes that contribute to fibrogenesis and the inherent difficulty in accurately recreating the human pulmonary environment . Here, we describe a poly(ethylene glycol) PEG hydrogel-based three-dimensional model for the co-culture of primary murine pulmonary fibroblasts and alveolar epithelial cells that reproduces the micro-architecture, cell placement, and mechanical properties of healthy and fibrotic lung tissue.
View Article and Find Full Text PDF